作者:丁点helper
来源:丁点帮你
前面的文章主要介绍了回归的一些关键词,比如回归系数、样本和总体回归方程、预测值和残差等,今天我们结合一个案例来看看如何做完整的回归分析,准确而言,是多重线性回归(Multiple Linear Regreesion)。
回顾:多重线性回归
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
在实际应用中,我们当然很少只纳入一个自变量。多重线性回归一般也叫“多元线性回归”,我更支持“多重”的叫法,因为“多元”一般也指“因变量Y”有多个。
通过前面的文章,我们知道做线性回归就是要构建Y与X的线性关系,主要目的有两个,一是确定X对Y的影响程度(即回归系数的计算);二是通过X来预测Y。
这里最重要的一条准则是:Y需要是定量变量,就是类似于“收入”、“得分”等。而对X没有这样的要求,可以是定量的,如“教育年限”、“年龄”等;也可以是“性别”、“民族”等分类变量。
案例 从某高校三年级女生体检的数据中,随机抽取20名作为样本,数据包括体重(kg)、胸围(cm)、肩宽(cm)及肺活量(L),分析女大学生肺活量的影响因素,数据见下表:
首先简单看看上表的数据,我们想要研究女生肺活量的影响因素,所以回归的因变量为“肺活量(Y)”,根据常识和数据,这里的Y是定量变量。
搜集的其他数据作为潜在的影响因素(X)纳入回归方程,分别是:体重、胸围、肩宽。我们也能简单就能判断这三个自变量都是定量变量。
(对于变量类型如何判断还不太了解的同学,戳此回顾)
这里进行回归分析,一是判断这些X是否都会影响Y(总体回归系数是否不为0);二是通过构造的回归方程,未来根据X的值计算Y的预测值。
多重线性回归的SPSS操作
回归分析用SPSS操作的步骤如下:
SPSS数据录入格式
回归操作窗口,Dependent为因变量,Independent为自变量,分别移入
上图中的“Method”称作“自变量筛选”方法,我们做线性回归分析很重要的一点是找Y的影响因素,这里的“找”就意味着“筛选”。
比如本案例我们纳入了三个自变量,通过回归分析,就是要找到那些真正对Y产生影响的变量。最终的结果有可能三个X都有影响,则最终的回归方程会有三个X,也有可能一个X都没有。
我们看到Method的下拉菜单有不同的选项:
Enter:将自变量强行全部纳入回归方程,不排除回归系数P值大于0.05的情况;
Stepwise、Remove、Backward、Forward,这些都是软件筛选自变量的方法,虽然名称不一,但思想相近,主要就是根据回归系数检验的P值是否小于0.05(有的是0.1)判断回归方程中应不应该有这个变量。
一般来讲,没有哪个筛选方法最优,但实际应用中常见的是Stepwise和Backward,建议大家自己进行回归分析时可以更换不同的方法尝试,选择自己认为合适的方法。
本案例使用Stepwise法,中文称为“逐步法”或“步进法”。
多重线性回归的结果分析
以下为SPSS分析结果展示:
表1:回归方程的拟合程度
上表最左侧一列为“Model”,表示的是SPSS筛选变量的过程,因为我们选择的是stepwise,所以每进行一步,即每筛选一个变量,就称为一个Model,比如Model"1"表示只纳入1个自变量,Model“2”表示纳入2个,“3”表示纳入3个,”4“表示最终模型剔除了一个自变量,仅纳入2个自变量。
表格第2-4列分别为”R、R Square、Adjusted R Square“,一般的教科书讲的很多,表示的是回归方程对因变量的解释程度,数值越大,解释度越高。但它又是一个比较尴尬的数,实际应用简单参考即可。
表2:回归方程的整体检验
这里的Model和上表1中表示的是同一个意思,代表了包括不同自变量的回归方程。对于回归方程的检验,一般来讲,都是有统计学意义的,看最后一列(Sig.),即P值均小于0.05。
表3:回归系数结果
表3中的Model详细展示了变量的筛选过程,比如在Model 3中,回归方程将三个自变量”肩宽、体重、胸围“全部纳入,但是发现,”肩宽“这个变量的Sig.(P值)大于0.1了,于是就将它剔除出去,从而得到模型4——只纳入”体重和胸围“两个自变量,对照后面的P值结果,均小于0.05。
以上只是一种筛选变量的一种方法(Stepwise),通过统计软件P值自动进行,这并不意味,所有的线性回归分析均只能通过这种方法筛选,我们常说需要结合专业知识判断,在做回归分析时也不例外。
如果回归分析的结果与专业知识相悖,比如根据专业知识有影响的变量却被软件剔除,那我们首先得慎重思考回归的结果是否可信,比如是否满足前文提及的LINE条件,是否出现了多重共线性问题等等;如果经过诊断分析发现这些问题都不存在,在研究报告或论文中,仍可以如实地报告结果,为后面的研究提供参考。
本案例,我们还是依照统计软件的结果筛选变量,得到的最终回归方程为:
根据上表,我们写出本研究的回归方程:
上述结果表示,可以认为体重和胸围是影响该校一年级女大学生肺活量的主要因素,保持胸围不变,体重增加1kg,估计肺活量平均增加0.081L(回归系数”0.081“的含义,在多重线性回归分析中也可称作”偏回归系数“);保持体重不变,胸围增大1cm,估计肺活量平均增加0.046L(回归系数”0.046“的含义)。
另外,上表最后一列提供了一个”标准化偏回归系数“,这是将XY分别标准化之后再进行回归分析,如下:
”标准化偏回归系数“可以用来比较不同的自变量X对Y的影响程度。本例中,体重和胸围的标准化偏回归系数分别为0.644和0.436,意味着体重对肺活量的影响大于胸围对肺活量的影响。
以上即为回归分析的全过程,最后留给大家一个思考题,这里进行的分析,表示的是X和Y的相关关系,还是因果关系?欢迎在评论区留言讨论。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31