作者:丁点helper
来源:丁点帮你
上一篇文章介绍了一般线性回归的典型操作,并且留了一个思考题。感谢小伙伴的参与,大家很厉害,没有被迷惑到,线性回归获得的系数代表的是相关关系,而非因果关联。
回归是相关不是因果
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
因为,回归的使用仅能说明数据之前存在关联,但这种关联是否真正代表了两者的内在联系还需要更深入的研究。
之所以采用回归分析,就是通过纳入多个自变量,达到控制混杂因素的作用,但是我们无法纳入所有可能的因素,即所谓的“遗漏变量”(omitted variables),从而导致回归的结果不准确。
例如,探究教育程度与收入的关系,如果我们在回归分析中没有纳入“父母的平均教育程度”这个变量,此时,这个变量就被称为“遗漏变量”。
根据常识,父母的教育程度应该是孩子未来收入的重要影响因素,同时也几乎决定了孩子的教育程度。因此,遗漏这个变量有可能让我们得出有偏差的结果(一般会高估个人教育程度对未来收入的影响)。
同时,如果X与Y之间的关系,不是X导致Y,而是Y导致X(称作“反向因果”),此时的回归分析也会得出有统计学意义的结果(总体回归系数不为0)。
但这个结果无法显示相关关系的方向,即无法判断是X→Y,还是Y→X,从而误导我们的判断。
例如,常有人说,一个国家保护私人产权制度越完善,这个国家就越富裕。
这意味着完备的产权促进了国家经济的发展,于是人们建议:贫穷的国家都要实施良好的私有产权保护。
不可否认,产权对提升经济发展的确有作用。但我们不能忽略这其中的反向因果。
也就是说,很有可能是一个国家富裕之后才开始注意产权保护,产权制度才会更加完善,由此,并非是产权促进了经济的发展,而是经济发展促进了产权的完善。
所以,我们不能只从两组数据的相关就推测因果,除了那些没有纳入考虑的变量,反向因果也有可能对我们进行误导。
由此来看,回归分析更像是一种探索,它提供某种线索,启示我们下一步的研究方向。
回归诊断——残差图
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
回归分析有时候之所以不能揭示因果,除了上面谈到的遗漏变量效应和反向因果外,某些假设条件的违反也会导致回归的结果不准。
所以,我们要牢记做完回归并不意味着万事大吉,进行必要的诊断性分析十分必要。
回归诊断,就是通过各种方法来验证回归分析的假设条件以及其他因素的影响,这里我们重点讲讲回归LINE条件的诊断和多重共线性的识别。
前文我们提到过做线性回归的时候一般需满足:线性、独立、正态、方差齐(LINE)条件。
对这些假设条件的诊断其实有各种各样的办法,其中一种使用十分广泛,简单易学,同时效率也比较高的做法是作残差图。
画残差图,一般是以回归分析Y的预测值为横轴,以残差为纵轴做散点图。
如果打开SPSS,可以看到回归分析模块中有很多种残差:未标准化、标准化、学生化等等。
简单起见,大家可以选择所谓的“学生化”残差。
不知有同学是否了解过,什么叫“学生化残差”?(不能再古怪了!)
实际上,它和我们前面学习的t检验还有联系。
t检验发明者的笔名就叫“学生”,即student,所以这里的“学生化残差”可以简单理解为一种t变换(与标准化,即z变换类似)。
具体的细节感兴趣的同学可以去查一查。在我们的具体应用中,采用“学生化残差”和“预测值”做散点图还是挺简单的,而且可以发现一些问题。
一条原则:如果线性回归效果较好,则残差图的各个散点会围绕着“残差=0”水平线上下均匀分布,如下图中的红线。
这可能是最简单的诊断方法,通过观察散点在上述红线上下的分布情况来推测回归分析的质量,同时提示需要改进的方向。
例如,下面这张散点图,就提示Y与自变量X之间可能存在某种曲线关系。
当增加某个自变量的二次项后,回归被改善。
没有添加任何二次项
增加x1的二次项,拟合效果提示
除此以外,线性回归诊断另一个常见的问题是,当自变量X之间互相存在高度相关性时,会导致回归方程估计结果不稳定,回归系数的标准误大大增加(可以通过数学公式证明,标准误计算的分母因为X之间的相关系数而变大,从而整个标准误变小),称为共线性。
共线性最大的问题是,导致本身有意义(P<0.05)的结果变为无意义(P>0.05)。
SPSS在线性回归分析模块也有专门的共线性诊断指标,我们在分析时点选即可:
根据上一篇文章中的例子,共线性诊断的的指标均在要求之内,提示共线性问题不严重。
最后,如果线性回归的LINE没有通过诊断分析,需要怎样改进呢?如下图,大家作为参考,这些内容后期有机会我们逐渐给大家讲解。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16