京公网安备 11010802034615号
经营许可证编号:京B2-20210330
先回忆一下之前用到的例子。
将其输入R语言中:
age <- c(25, 34, 59, 60, 20) #患者年龄
type <- c(1, 2, 2, 2, 1) #糖尿病类型
status <- c("poor", "improved", "excellent", "poor", "excellent") #病情
comorbidity<- c(TRUE, FALSE, FALSE, TRUE, FALSE) #出现并发症
mydata <- data.frame(age, type, status, comorbidity) #将数据框命名为mydata
查看mydata:
mydata
## age type status comorbidity
## 1 25 1 poor TRUE
## 2 34 2 improved FALSE
## 3 59 2 excellent FALSE
## 4 60 2 poor TRUE
## 5 20 1 excellent FALSE
接下来我们就以mydata为例,介绍一下如何对数据框进行简单的操作。
了解一个数据框
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
面对数据,第一步就是要了解它有多少条记录(或多少个case/ observation ),有多少个变量(variable)、分别是哪些。
## 获取数据框的维度(几行、几列)
dim(mydata)
[1] 5 4
## 查看数据框中的所有变量名(列名)
names(mydata)
[1] "age" "type" "status" "comorbidity"
## 查看数据框的整体结构(维度、变量名、数据类型、数据内容)
str(mydata)
'data.frame': 5 obs. of 4 variables:
$ age : num 25 34 59 60 20
$ type : num 1 2 2 2 1
$ status : Factor w/ 3 levels "excellent","improved",..: 3 2 1 3 1
$ comorbidity: logi TRUE FALSE FALSE TRUE FALSE
如何提取数据框中的行和列
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
2种方法:
1. 数据框后加[ , ]。逗号前是行,逗号后是列。如果没有指定是哪一行或哪一列,默认为所有行/列。
## 提取第一行
mydata[1,]
age type status comorbidity
1 25 1 poor TRUE
## 提取第一列
mydata[,1]
[1] 25 34 59 60 2
## 提取某几行或某几列
## 提取1~3行
mydata[1:3,]
age type status comorbidity
1 25 1 poor TRUE
2 34 2 improved FALSE
3 59 2 excellent FALSE
## 提取第1和第5行的1、2、4列
mydata[c(1,5),c(1,2,4)]
age type comorbidity
1 25 1 TRUE
5 20 1 FALSE
## 变量很多时,用列名来提取更方便
mydata[c(1,5),c('age','type','comorbidity')]
age type comorbidity
1 25 1 TRUE
5 20 1 FALSE
2. 另一种提取列的方法是,在数据框后加 $,然后再加要提取的列名。
## 提取age这一列
mydata$age
[1] 25 34 59 60 20
获取满足特定条件的数据
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
1.提取满足某一个条件的数据。
例如,在病情status这个变量中,有poor, improved 和 excellent这三类,现在想获取病情最稳定、恢复最好的患者信息。也就是说,我们希望获得status为excellent的病例,即选择满足mydata$status=='excellent'的行,以及被选中的行的每一列。
mydata[mydata$status=='excellent',]
age type status comorbidity
3 59 2 excellent FALSE
5 20 1 excellent FALSE
此外,还可进一步提取,例如,想获得病情status为excellent的患者中,并发症comorbidity的情况。换句话说,就是,想提取comorbidity的信息,但这些信息必须是病情最稳定的几位患者的。
## 具体操作如下:先提取comorbidity,再设置status的条件
输入语句:mydata$comorbidity[mydata$status=='excellent']
[1] FALSE FALSE
2.提取满足多个条件的数据。
例如,想提取年龄age大于等于20岁,且小于35岁的病例。在R中,用&这个符号表达『并且』。用一个小竖杠 | 表达『或者』。
mydata[mydata$age>=20 & mydata$age<35,]
age type status comorbidity
1 25 1 poor TRUE
2 34 2 improved FALSE
5 20 1 excellent FALSE
3.subset()函数,既可用来选择行,也可选择列,当然也可以用来提取满足特定条件的内容。
# 选择行/满足特定条件的行
subset(mydata, mydata$age>=20 & mydata$age<35)
age type status comorbidity
1 25 1 poor TRUE
2 34 2 improved FALSE
5 20 1 excellent FALSE
# 选择列
subset(mydata, select = c('age','status'))
age status
1 25 poor
2 34 improved
3 59 excellent
4 60 poor
5 20 excellent
有缺失数据怎么办
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
由于原来的数据框中没有缺失数据,这里我们来构造一个新的记录(observation),让这个记录中全部都是缺失值。
mydata[6,] <- NA
mydata
age type status comorbidity
1 25 1 poor TRUE
2 34 2 improved FALSE
3 59 2 excellent FALSE
4 60 2 poor TRUE
5 20 1 excellent FALSE
6 <NA> <NA> <NA> <NA>
1. 只保留无缺失的observations。如果希望将无缺失版本的数据框保存起来,要记得把na.omit(mydata)的结果赋值给新的对象。
mydata_no_NA <- na.omit(mydata)
mydata_no_NA
age type status comorbidity
1 25 1 poor TRUE
2 34 2 improved FALSE
3 59 2 excellent FALSE
4 60 2 poor TRUE
5 20 1 excellent FALSE
2. 查看哪个数据为缺失值。需要用到2个函数,这里提醒大家,如果R的语句太复杂,那么可以先从最中心的部分读起,一层括号一层括号地向外扩展。
例如,下面的语句,可以先看最中间的is.na(mydata$age),意思是对age这列中的每个数据进行一次检验,返回『是否为缺失值』的逻辑型结果,即TRUE 或者 FALSE。再看which()这个函数,它返回的是前面这一串TRUE和FALSE中,出现TRUE的顺序号。
从下面的结果我们可以看到,只有第6个数据是TRUE。
which(is.na(mydata$age))
[1] 6
is.na(mydata$age)
[1] FALSE FALSE FALSE FALSE FALSE TRUE
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11