先回忆一下之前用到的例子。
将其输入R语言中:
age <- c(25, 34, 59, 60, 20) #患者年龄
type <- c(1, 2, 2, 2, 1) #糖尿病类型
status <- c("poor", "improved", "excellent", "poor", "excellent") #病情
comorbidity<- c(TRUE, FALSE, FALSE, TRUE, FALSE) #出现并发症
mydata <- data.frame(age, type, status, comorbidity) #将数据框命名为mydata
查看mydata:
mydata
## age type status comorbidity
## 1 25 1 poor TRUE
## 2 34 2 improved FALSE
## 3 59 2 excellent FALSE
## 4 60 2 poor TRUE
## 5 20 1 excellent FALSE
接下来我们就以mydata为例,介绍一下如何对数据框进行简单的操作。
了解一个数据框
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
面对数据,第一步就是要了解它有多少条记录(或多少个case/ observation ),有多少个变量(variable)、分别是哪些。
## 获取数据框的维度(几行、几列)
dim(mydata)
[1] 5 4
## 查看数据框中的所有变量名(列名)
names(mydata)
[1] "age" "type" "status" "comorbidity"
## 查看数据框的整体结构(维度、变量名、数据类型、数据内容)
str(mydata)
'data.frame': 5 obs. of 4 variables:
$ age : num 25 34 59 60 20
$ type : num 1 2 2 2 1
$ status : Factor w/ 3 levels "excellent","improved",..: 3 2 1 3 1
$ comorbidity: logi TRUE FALSE FALSE TRUE FALSE
如何提取数据框中的行和列
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
2种方法:
1. 数据框后加[ , ]。逗号前是行,逗号后是列。如果没有指定是哪一行或哪一列,默认为所有行/列。
## 提取第一行
mydata[1,]
age type status comorbidity
1 25 1 poor TRUE
## 提取第一列
mydata[,1]
[1] 25 34 59 60 2
## 提取某几行或某几列
## 提取1~3行
mydata[1:3,]
age type status comorbidity
1 25 1 poor TRUE
2 34 2 improved FALSE
3 59 2 excellent FALSE
## 提取第1和第5行的1、2、4列
mydata[c(1,5),c(1,2,4)]
age type comorbidity
1 25 1 TRUE
5 20 1 FALSE
## 变量很多时,用列名来提取更方便
mydata[c(1,5),c('age','type','comorbidity')]
age type comorbidity
1 25 1 TRUE
5 20 1 FALSE
2. 另一种提取列的方法是,在数据框后加 $,然后再加要提取的列名。
## 提取age这一列
mydata$age
[1] 25 34 59 60 20
获取满足特定条件的数据
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
1.提取满足某一个条件的数据。
例如,在病情status这个变量中,有poor, improved 和 excellent这三类,现在想获取病情最稳定、恢复最好的患者信息。也就是说,我们希望获得status为excellent的病例,即选择满足mydata$status=='excellent'的行,以及被选中的行的每一列。
mydata[mydata$status=='excellent',]
age type status comorbidity
3 59 2 excellent FALSE
5 20 1 excellent FALSE
此外,还可进一步提取,例如,想获得病情status为excellent的患者中,并发症comorbidity的情况。换句话说,就是,想提取comorbidity的信息,但这些信息必须是病情最稳定的几位患者的。
## 具体操作如下:先提取comorbidity,再设置status的条件
输入语句:mydata$comorbidity[mydata$status=='excellent']
[1] FALSE FALSE
2.提取满足多个条件的数据。
例如,想提取年龄age大于等于20岁,且小于35岁的病例。在R中,用&这个符号表达『并且』。用一个小竖杠 | 表达『或者』。
mydata[mydata$age>=20 & mydata$age<35,]
age type status comorbidity
1 25 1 poor TRUE
2 34 2 improved FALSE
5 20 1 excellent FALSE
3.subset()函数,既可用来选择行,也可选择列,当然也可以用来提取满足特定条件的内容。
# 选择行/满足特定条件的行
subset(mydata, mydata$age>=20 & mydata$age<35)
age type status comorbidity
1 25 1 poor TRUE
2 34 2 improved FALSE
5 20 1 excellent FALSE
# 选择列
subset(mydata, select = c('age','status'))
age status
1 25 poor
2 34 improved
3 59 excellent
4 60 poor
5 20 excellent
有缺失数据怎么办
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
由于原来的数据框中没有缺失数据,这里我们来构造一个新的记录(observation),让这个记录中全部都是缺失值。
mydata[6,] <- NA
mydata
age type status comorbidity
1 25 1 poor TRUE
2 34 2 improved FALSE
3 59 2 excellent FALSE
4 60 2 poor TRUE
5 20 1 excellent FALSE
6 <NA> <NA> <NA> <NA>
1. 只保留无缺失的observations。如果希望将无缺失版本的数据框保存起来,要记得把na.omit(mydata)的结果赋值给新的对象。
mydata_no_NA <- na.omit(mydata)
mydata_no_NA
age type status comorbidity
1 25 1 poor TRUE
2 34 2 improved FALSE
3 59 2 excellent FALSE
4 60 2 poor TRUE
5 20 1 excellent FALSE
2. 查看哪个数据为缺失值。需要用到2个函数,这里提醒大家,如果R的语句太复杂,那么可以先从最中心的部分读起,一层括号一层括号地向外扩展。
例如,下面的语句,可以先看最中间的is.na(mydata$age),意思是对age这列中的每个数据进行一次检验,返回『是否为缺失值』的逻辑型结果,即TRUE 或者 FALSE。再看which()这个函数,它返回的是前面这一串TRUE和FALSE中,出现TRUE的顺序号。
从下面的结果我们可以看到,只有第6个数据是TRUE。
which(is.na(mydata$age))
[1] 6
is.na(mydata$age)
[1] FALSE FALSE FALSE FALSE FALSE TRUE
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07