CDA数据分析师 出品
作者:真达、Mika
数据:真达
【导读】
今天教大家用python分析《世界幸福指数报告》。《世界幸福指数报告》是对全球幸福状况的一次具有里程碑意义的调查。
民意测验机构盖洛普从2012年起,每年都会在联合国计划下发布《世界幸福指数报告》,报告会综合两年内150多个国家的国民对其所处社会、城市和自然环境等因素进行评价后,再根据他们所感知的幸福程度对国家进行排名。
《世界幸福指数报告》的编撰主要依赖于对150多个国家的1000多人提出一个简单的主观性问题:“如果有一个从0分到10分的阶梯,顶层的10分代表你可能得到的最佳生活,底层的0分代表你可能得到的最差生活。你觉得你现在在哪一层?”
那么哪个国家在总体幸福指数上排名最高?哪些因素对幸福指数的影响最大?今天我们就带你用Python来聊一聊。
01、数据理解
关键字段含义解释:
1. rank:幸福指数排名
2. region:国家
3. happiness:幸福指数得分
4. gdp_per_capita:GDP(人均国内生产总值)
5. healthy_life_expectancy:健康预期寿命
6. freedom_to_life_choise:自由权
7. generosity:慷慨程度
8. year:年份
9. corruption_perceptions:清廉指数
10. social_support:社会支持(客观上物质上的援助和直接服务;主观上指个体感到在社会中被尊重、被支持和被理解的情绪体验和满意程度。)
02、数据导入和数据整理
首先导入所需包。
# 数据整理 import numpy as np import pandas as pd # 可视化 import matplotlib.pyplot as plt import seaborn as sns import plotly as py import plotly.graph_objs as go import plotly.express as px from plotly.offline import init_notebook_mode, iplot, plot init_notebook_mode(connected=True) plt.style.use('seaborn')
# 读入数据 df_2015 = pd.read_csv('./deal_data/2015.csv') df_2016 = pd.read_csv('./deal_data/2016.csv') df_2017 = pd.read_csv('./deal_data/2017.csv') df_2018 = pd.read_csv('./deal_data/2018.csv') df_2019 = pd.read_csv('./deal_data/2019.csv') # 新增列-年份 df_2015["year"] = str(2015) df_2016["year"] = str(2016) df_2017["year"] = str(2017) df_2018["year"] = str(2018) df_2019["year"] = str(2019) # 合并数据 df_all = df_2015.append([df_2016, df_2017, df_2018, df_2019], sort=False) df_all.drop('Unnamed: 0', axis=1, inplace=True) df_all.head()
print(df_2015.shape, df_2016.shape, df_2017.shape, df_2018.shape, df_2019.shape) (158, 10) (157, 10) (155, 10) (156, 11) (156, 11)
df_all.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 782 entries, 0 to 155 Data columns (total 10 columns): region 782 non-null object rank 782 non-null int64 happiness 782 non-null float64 gdp_per_capita 782 non-null float64 healthy_life_expectancy 782 non-null float64 freedom_to_life_choise 782 non-null float64 corruption_perceptions 781 non-null float64 generosity 782 non-null float64 year 782 non-null object social_support 312 non-null float64 dtypes: float64(7), int64(1), object(2) memory usage: 67.2+ KB
03、数据可视化
2019世界幸福地图
整体来看,北欧的国家幸福指数较高,如冰岛、丹麦、挪威、芬兰;东非和西非的国家幸福指数较低,如多哥、布隆迪、卢旺达和坦桑尼亚。
代码展示:
data = dict(type = 'choropleth', locations = df_2019['region'], locationmode = 'country names', colorscale = 'RdYlGn', z = df_2019['happiness'], text = df_2019['region'], colorbar = {'title':'Happiness'}) layout = dict(title = 'Geographical Visualization of Happiness Score in 2019', geo = dict(showframe = True, projection = {'type': 'azimuthal equal area'})) choromap3 = go.Figure(data = [data], layout=layout) plot(choromap3, filename='./html/世界幸福地图.html')
2019世界幸福国家排行Top10
2019年报告,芬兰连续两年被评为“全球最幸福国家”。丹麦、挪威、冰岛、荷兰进入前五名,对比2018年报告,中国从86名下降到93名。
代码展示:
# 合并数据 rank_top10 = df_2019.head(10)[['rank', 'region', 'happiness']] last_top10 = df_2019.tail(10)[['rank', 'region', 'happiness']] rank_concat = pd.concat([rank_top10, last_top10]) # 条形图 fig = px.bar(rank_concat, x="region", y="happiness", color="region", title="World's happiest and least happy countries in 2019") plot(fig, filename='./html/2019世界幸福国家排行Top10和Last10.html')
幸福指数相关性
我们可以得出以下结论:
以下分别观察各个因素的影响程度。
GDP和幸福得分
人均GDP与幸福得分呈高度线性正相关关系,GDP越高的国家,幸福水平相对越高。
代码展示:
# 散点图 fig = px.scatter(df_all, x='gdp_per_capita', y='happiness', facet_row='year', color='year', trendline='ols' ) fig.update_layout(height=800, title_text='GDP per capita and Happiness Score') plot(fig, filename='./html/GDP和幸福得分.html')
健康预期寿命和幸福得分
健康预期寿命与幸福得分呈高度线性正相关关系,健康预期寿命越高的国家,幸福水平相对越高。
代码展示:
散点图 fig = px.scatter(df_all, x='healthy_life_expectancy', y='happiness', facet_row='year', color='year', trendline='ols' ) fig.update_layout(height=800, title_text='Healthy Life Expecancy and Happiness Score') plot(fig, filename='./html/健康预期寿命和幸福得分.html')
GDP和幸福水平动态图
代码展示:
fig = px.scatter(df_all, x='gdp_per_capita', y='happiness', animation_frame='year', animation_group='region', size='rank', color='region', hover_name='region', trendline='ols' ) fig.update_layout(title_text='Happiness Rank vs GDP per Capita') plot(fig, filename='./html/GDP和幸福水平动态图展示.html')
健康预期寿命和幸福水平动态图
代码展示:
fig = px.scatter(df_all, x='healthy_life_expectancy', y='happiness', animation_frame='year', animation_group='region', size='rank', color='region', hover_name='region', trendline='ols' ) fig.update_layout(title_text='Happiness Rank vs healthy_life_expectancy') plot(fig, filename='./html/健康预期寿命和幸福水平动态图展示.html')
04、数据建模
我们使用线性回归进行建立一个基准模型,首先筛选一下建模变量,并删除空值记录。
sel_cols = ['happiness', 'gdp_per_capita', 'healthy_life_expectancy', 'freedom_to_life_choise', 'corruption_perceptions', 'generosity'] # 重置索引 df_model.index = range(df_model.shape[0]) df_model = df_all[sel_cols] # 删除空值 df_model = df_model.dropna() df_model.head()
from statsmodels.formula.api import ols # 建立多元线性回归模型 lm_m = ols(formula='happiness ~ gdp_per_capita + healthy_life_expectancy + freedom_to_life_choise + corruption_perceptions + generosity', data=df_model).fit() lm_m.summary()
模型的R-squared=0.744,拟合效果尚可,根据模型的参数可知:
比较预测值和真实值的分布:
df_pred = pd.concat([df_model['happiness'], y_pred], axis=1) df_pred.columns = ['y_true', 'y_pred'] # 散点图 fig = px.scatter(df_pred, x='y_true', y='y_pred', trendline='ols') fig.update_layout(title='Resid of OLS Regression') plot(fig, filename='./html/预测值和真实值分布图.html')
以下为模型残差分布图。
fig = px.histogram(x=lm_m.resid) fig.update_layout(title='Resid of OLS Regression') plot(fig, filename='./html/多元线性回归残差分布图.html')
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13