CDA数据分析师 出品
作者:真达、Mika
数据:真达
【导读】
今天教大家用python分析《世界幸福指数报告》。《世界幸福指数报告》是对全球幸福状况的一次具有里程碑意义的调查。
民意测验机构盖洛普从2012年起,每年都会在联合国计划下发布《世界幸福指数报告》,报告会综合两年内150多个国家的国民对其所处社会、城市和自然环境等因素进行评价后,再根据他们所感知的幸福程度对国家进行排名。
《世界幸福指数报告》的编撰主要依赖于对150多个国家的1000多人提出一个简单的主观性问题:“如果有一个从0分到10分的阶梯,顶层的10分代表你可能得到的最佳生活,底层的0分代表你可能得到的最差生活。你觉得你现在在哪一层?”
那么哪个国家在总体幸福指数上排名最高?哪些因素对幸福指数的影响最大?今天我们就带你用Python来聊一聊。
01、数据理解
关键字段含义解释:
1. rank:幸福指数排名
2. region:国家
3. happiness:幸福指数得分
4. gdp_per_capita:GDP(人均国内生产总值)
5. healthy_life_expectancy:健康预期寿命
6. freedom_to_life_choise:自由权
7. generosity:慷慨程度
8. year:年份
9. corruption_perceptions:清廉指数
10. social_support:社会支持(客观上物质上的援助和直接服务;主观上指个体感到在社会中被尊重、被支持和被理解的情绪体验和满意程度。)
02、数据导入和数据整理
首先导入所需包。
# 数据整理 import numpy as np import pandas as pd # 可视化 import matplotlib.pyplot as plt import seaborn as sns import plotly as py import plotly.graph_objs as go import plotly.express as px from plotly.offline import init_notebook_mode, iplot, plot init_notebook_mode(connected=True) plt.style.use('seaborn')
# 读入数据 df_2015 = pd.read_csv('./deal_data/2015.csv') df_2016 = pd.read_csv('./deal_data/2016.csv') df_2017 = pd.read_csv('./deal_data/2017.csv') df_2018 = pd.read_csv('./deal_data/2018.csv') df_2019 = pd.read_csv('./deal_data/2019.csv') # 新增列-年份 df_2015["year"] = str(2015) df_2016["year"] = str(2016) df_2017["year"] = str(2017) df_2018["year"] = str(2018) df_2019["year"] = str(2019) # 合并数据 df_all = df_2015.append([df_2016, df_2017, df_2018, df_2019], sort=False) df_all.drop('Unnamed: 0', axis=1, inplace=True) df_all.head()
print(df_2015.shape, df_2016.shape, df_2017.shape, df_2018.shape, df_2019.shape) (158, 10) (157, 10) (155, 10) (156, 11) (156, 11)
df_all.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 782 entries, 0 to 155 Data columns (total 10 columns): region 782 non-null object rank 782 non-null int64 happiness 782 non-null float64 gdp_per_capita 782 non-null float64 healthy_life_expectancy 782 non-null float64 freedom_to_life_choise 782 non-null float64 corruption_perceptions 781 non-null float64 generosity 782 non-null float64 year 782 non-null object social_support 312 non-null float64 dtypes: float64(7), int64(1), object(2) memory usage: 67.2+ KB
03、数据可视化
2019世界幸福地图
整体来看,北欧的国家幸福指数较高,如冰岛、丹麦、挪威、芬兰;东非和西非的国家幸福指数较低,如多哥、布隆迪、卢旺达和坦桑尼亚。
代码展示:
data = dict(type = 'choropleth', locations = df_2019['region'], locationmode = 'country names', colorscale = 'RdYlGn', z = df_2019['happiness'], text = df_2019['region'], colorbar = {'title':'Happiness'}) layout = dict(title = 'Geographical Visualization of Happiness Score in 2019', geo = dict(showframe = True, projection = {'type': 'azimuthal equal area'})) choromap3 = go.Figure(data = [data], layout=layout) plot(choromap3, filename='./html/世界幸福地图.html')
2019世界幸福国家排行Top10
2019年报告,芬兰连续两年被评为“全球最幸福国家”。丹麦、挪威、冰岛、荷兰进入前五名,对比2018年报告,中国从86名下降到93名。
代码展示:
# 合并数据 rank_top10 = df_2019.head(10)[['rank', 'region', 'happiness']] last_top10 = df_2019.tail(10)[['rank', 'region', 'happiness']] rank_concat = pd.concat([rank_top10, last_top10]) # 条形图 fig = px.bar(rank_concat, x="region", y="happiness", color="region", title="World's happiest and least happy countries in 2019") plot(fig, filename='./html/2019世界幸福国家排行Top10和Last10.html')
幸福指数相关性
我们可以得出以下结论:
以下分别观察各个因素的影响程度。
GDP和幸福得分
人均GDP与幸福得分呈高度线性正相关关系,GDP越高的国家,幸福水平相对越高。
代码展示:
# 散点图 fig = px.scatter(df_all, x='gdp_per_capita', y='happiness', facet_row='year', color='year', trendline='ols' ) fig.update_layout(height=800, title_text='GDP per capita and Happiness Score') plot(fig, filename='./html/GDP和幸福得分.html')
健康预期寿命和幸福得分
健康预期寿命与幸福得分呈高度线性正相关关系,健康预期寿命越高的国家,幸福水平相对越高。
代码展示:
散点图 fig = px.scatter(df_all, x='healthy_life_expectancy', y='happiness', facet_row='year', color='year', trendline='ols' ) fig.update_layout(height=800, title_text='Healthy Life Expecancy and Happiness Score') plot(fig, filename='./html/健康预期寿命和幸福得分.html')
GDP和幸福水平动态图
代码展示:
fig = px.scatter(df_all, x='gdp_per_capita', y='happiness', animation_frame='year', animation_group='region', size='rank', color='region', hover_name='region', trendline='ols' ) fig.update_layout(title_text='Happiness Rank vs GDP per Capita') plot(fig, filename='./html/GDP和幸福水平动态图展示.html')
健康预期寿命和幸福水平动态图
代码展示:
fig = px.scatter(df_all, x='healthy_life_expectancy', y='happiness', animation_frame='year', animation_group='region', size='rank', color='region', hover_name='region', trendline='ols' ) fig.update_layout(title_text='Happiness Rank vs healthy_life_expectancy') plot(fig, filename='./html/健康预期寿命和幸福水平动态图展示.html')
04、数据建模
我们使用线性回归进行建立一个基准模型,首先筛选一下建模变量,并删除空值记录。
sel_cols = ['happiness', 'gdp_per_capita', 'healthy_life_expectancy', 'freedom_to_life_choise', 'corruption_perceptions', 'generosity'] # 重置索引 df_model.index = range(df_model.shape[0]) df_model = df_all[sel_cols] # 删除空值 df_model = df_model.dropna() df_model.head()
from statsmodels.formula.api import ols # 建立多元线性回归模型 lm_m = ols(formula='happiness ~ gdp_per_capita + healthy_life_expectancy + freedom_to_life_choise + corruption_perceptions + generosity', data=df_model).fit() lm_m.summary()
模型的R-squared=0.744,拟合效果尚可,根据模型的参数可知:
比较预测值和真实值的分布:
df_pred = pd.concat([df_model['happiness'], y_pred], axis=1) df_pred.columns = ['y_true', 'y_pred'] # 散点图 fig = px.scatter(df_pred, x='y_true', y='y_pred', trendline='ols') fig.update_layout(title='Resid of OLS Regression') plot(fig, filename='./html/预测值和真实值分布图.html')
以下为模型残差分布图。
fig = px.histogram(x=lm_m.resid) fig.update_layout(title='Resid of OLS Regression') plot(fig, filename='./html/多元线性回归残差分布图.html')
数据分析咨询请扫描二维码
在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16