作者:星安果
来源:AirPython
前面两篇文章聊到了 python 处理 Mysql、Sqlite 数据库常用方式,本篇文章继续说另外一种比较常用的数据存储方式:Redis
Redis:Remote Dictionary Server,即:远程字典服务,Redis 底层使用 C 语言编写,是一款开源的、基于内存的 NoSql 数据库
由于 Redis 性能远超其他数据库,并且支持集群、分布式及主从同步等优势,所以经常用于 缓存数据、高速读写 等场景
本篇文章就聊聊 Python 操作 Redis 正确的姿势
——准备
我们以在云服务器 Centos 7.8 安装 Redis-Server 为例
首先,安装在云服务器上 Redis 数据库
# 下载epel仓库 yum install epel-release # 安装redis yum install redis
然后,通过 vim 命令修改 Redis 配置文件,打开远程连接,设置连接密码
配置文件目录:/etc/redis.conf
# vim /etc/redis.conf # 1、bing从127.0.0.1修改为:0.0.0.0,开放远程连接 bind 0.0.0.0 # 2、设置密码 requirepass 123456
需要指出的是,为了保证云服务器数据安全,Redis 开放远程访问的时候,一定要加强密码
接着,启动 Redis 服务,开启防火墙和端口,配置云服务器安全组
默认情况下,Redis 服务使用的端口号是 6379
另外,需要在云服务器安全组进行配置,保证 Redis 数据库能正常连接
# 启动Redis服务,默认redis端口号是6379 systemctl start redis # 打开防火墙 systemctl start firewalld.service # 开放6379端口 firewall-cmd --zone=public --add-port=6379/tcp --permanent # 配置立即生效 firewall-cmd --reload
完成以上操作,我们就可以通过 Redis-CLI 或 Redis 客户端工具进行连接了
最后,要使用 python 操作 Redis,我们需要使用 pip 安装一个依赖
# 安装依赖,便于操作redis pip3 install redis
——实战
在操作 Redis 中的数据之前,我们需要利用 Host、端口号、密码实例化一个 Redis 连接对象
from redis import Redis class RedisF(object): def __init__(self): # 实例化Redis对象 # decode_responses=True,如果不加则写入的为字节类型 # host:远程连接地址 # port:Redis端口号 # password:Redis授权密码 self.redis_obj = Redis(host='139.199.**.**',port=6379,password='123456', decode_responses=True,charset='UTF-8', encoding='UTF-8')
接下来我们以操作字符串、列表、set 集合、zset 集合、哈希表、事务为例,讲讲 Python 操作这些数据的方法
1、字符串操作
操作字符串有两种方式,操作方法分别是:set() 和 mset()
其中:set() 一次只能保存一个值,参数意义如下
获取值和删除值的操作方法分别为:get(Key)、 delete(Key or Keys)
# set():单字符串操作 # 添加一个值,并设置超时时间为120s self.redis_obj.set('name', 'airpython', ex=120) # get():获取这个值 print(self.redis_obj.get('name')) # delete():删除一个值或多个值 self.redis_obj.delete('name') print(self.redis_obj.get('name'))
对于多值数据的设置,只需要调用 mset() 方法,将待插入的数据以键值对组成一个字典作为参数即可。同理,Redis 提供了 mget() 方法,可以一次获取多个键的值
# mset():设置多个值 self.redis_obj.mset({"foo": "foo1", "zoo": "zoo1"}) # mget():获取多个值 result = self.redis_obj.mget("foo", "zoo") print(result)
2、列表操作
Redis 提供了很多方法用于操作列表,其中比较常见的如下:
实例代码如下:
def manage_list(self): """ 操作列表 :return: """ # 1、新增一个列表,并左边插入一个数据 # 注意:可以一次加入多个元素,也可以一个个元素的加入 self.redis_obj.lpush('company', '阿里', '腾讯', '百度') # 2、移除第一个元素 self.redis_obj.lpop("company") # 3、右边插入数据 self.redis_obj.rpush('company', '字节跳动', '小米') # 4、移除最后一个元素 self.redis_obj.rpop("company") # 5、获取列表的长度 self.redis_obj.llen("company") # 6、通过索引,获取列表中的某一个元素(第二个元素) print('列表中第二个元素是:', self.redis_obj.lindex("company", 1)) # 7、根据范围,查看列表中所有的值 print(self.redis_obj.lrange('company', 0, -1))
3、操作 Set 集合
Set 是一个无序的元素集合,集合中的元素不能重复,Redis 同样提供了很多方法,便于操作 Set 集合
其中,比较常用的方法如下:
具体实例代码如下:
def manage_set(self): """ 操作set集合 :return: """ self.redis_obj.delete("fruit") # 1、sadd:新增元素到集合中 # 添加一个元素:香蕉 self.redis_obj.sadd('fruit', '香蕉') # 再添加两个元素 self.redis_obj.sadd('fruit', '苹果', '桔子') # 2、集合元素的数量 print('集合元素数量:', self.redis_obj.scard('fruit')) # 3、移除一个元素 self.redis_obj.srem("fruit", "桔子") # 再定义一个集合 self.redis_obj.sadd("fruit_other", "香蕉", "葡萄", "柚子") # 4、获取两个集合的交集 result = self.redis_obj.sinter("fruit", "fruit_other") print(type(result)) print('交集为:', result) # 5、获取两个集合的并集 result = self.redis_obj.sunion("fruit", "fruit_other") print(type(result)) print('并集为:', result) # 6、差集,以第一个集合为标准 result = self.redis_obj.sdiff("fruit", "fruit_other") print(type(result)) print('差集为:', result) # 7、合并保存到新的集合中 self.redis_obj.sunionstore("fruit_new", "fruit", "fruit_other") print('新的集合为:', self.redis_obj.smembers('fruit_new')) # 8、判断元素是否存在集合中 result = self.redis_obj.sismember("fruit", "苹果") print('苹果是否存在于集合中', result) # 9、随机从集合中删除一个元素,然后返回 result = self.redis_obj.spop("fruit") print('删除的元素是:', result) # 3、集合中所有元素 result = self.redis_obj.smembers('fruit') print("最后fruit集合包含的元素是:", result)
4、操作 zset 集合
zset 集合相比普通 set 集合,是有序的,zset 集合中的元素包含:值和分数,其中分数用于排序
其中,比较常用的方法如下:
实践代码如下:
def manage_zset(self): """ 操作zset集合 :return: """ self.redis_obj.delete("fruit") # 往集合中新增元素:zadd() # 三个元素分别是:"banana", 1/"apple", 2/"pear", 3 self.redis_obj.zadd("fruit", "banana", 1, "apple", 2, "pear", 3) # 查看集合中所有元素(不带分数) result = self.redis_obj.zrange("fruit", 0, -1) # ['banana', 'apple', 'pear'] print('集合中的元素(不带分数)有:', result) # 查看集合中所有元素(带分数) result = self.redis_obj.zrange("fruit", 0, -1, withscores=True) # [('banana', 1.0), ('apple', 2.0), ('pear', 3.0)] print('集合中的元素(带分数)有:', result) # 获取集合中某一个元素的分数 result = self.redis_obj.zscore("fruit", "apple") print("apple对应的分数为:", result) # 通过最小值和最大值,判断分数在这个范围内的元素个数 result = self.redis_obj.zcount("fruit", 1, 2) print("集合中分数大于1,小于2的元素个数有:", result) # 获取集合中元素个数 count = self.redis_obj.zcard("fruit") print('集合元素格式:', count) # 获取元素的值获取索引号 index = self.redis_obj.zrank("fruit", "apple") print('apple元素的索引为:', index) # 删除集合中的元素:zrem self.redis_obj.zrem("fruit", "apple") print('删除apple元素后,剩余元素为:', self.redis_obj.zrange("fruit", 0, -1))
4、操作哈希
哈希表中包含很多键值对,并且每一个键都是唯一的
Redis 操作哈希表,下面这些方法比较常用:
对应的操作代码如下:
def manage_hash(self): """ 操作哈希表 哈希:一个键对应一个值,并且键不容许重复 :return: """ self.redis_obj.delete("website") # 1、新建一个key为website的哈希表 # 往里面加入数据:baidu(field),www.baidu.com(value) self.redis_obj.hset('website', 'baidu', 'www.alibababaidu.com') self.redis_obj.hset('website', 'google', 'www.google.com') # 2、往哈希表中添加多个键值对 self.redis_obj.hmset("website", {"tencent": "www.qq.com", "alibaba": "www.taobao.com"}) # 3、获取某一个键的值 result = self.redis_obj.hget("website", 'baidu') print("键为baidu的值为:", result) # 4、获取多个键的值 result = self.redis_obj.hmget("website", "baidu", "alibaba") print("多个键的值为:", result) # 5、查看hash表中的所有值 result = self.redis_obj.hgetall('website') print("哈希表中所有的键值对为:", result) # 6、哈希表中所有键列表 # ['baidu', 'google', 'tencent', 'alibaba'] result = self.redis_obj.hkeys("website") print("哈希表,所有的键(列表)为:", result) # 7、哈希表中所有的值列表 # ['www.alibababaidu.com', 'www.google.com', 'www.qq.com', 'www.taobao.com'] result = self.redis_obj.hvals("website") print("哈希表,所有的值(列表)为:", result) # 8、判断某一个键是否存在 result = self.redis_obj.hexists("website", "alibaba") print('alibaba这个键是否存在:', result) # 9、删除某一个键值对 self.redis_obj.hdel("website", 'baidu') print('删除baidu键值对后,哈希表的数据包含:', self.redis_obj.hgetall('website')) # 10、哈希表中键值对个数 count = self.redis_obj.hlen("website") print('哈希表键值对一共有:', count)
5、操作事务管道
Redis 支持事务管道操作,能够将几个操作统一提交执行
操作步骤是:
下面通过一个简单的例子来说明:
def manage_steps(self): """ 执行事务操作 :return: """ # 1、定义一个事务管道 self.pip = self.redis_obj.pipeline() # 定义一系列操作 self.pip.set('age', 18) # 增加一岁 self.pip.incr('age') # 减少一岁 self.pip.decr('age') # 执行上面定义3个步骤的事务操作 self.pip.execute() # 判断 print('通过上面一些列操作,年龄变成:', self.redis_obj.get('age'))
本篇文章通过 python 实现了对 Redis 常见数据的操作,大家有问题可以留言咨询哦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-03-032025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-03-03大数据分析师培训旨在培养学员掌握大数据分析的基础知识、技术及应用能力,以适应企业对数据分析人才的需求。根据不同的培训需求 ...
2025-03-03小伙伴们,最近被《哪吒2》刷屏了吧!这部电影不仅在国内掀起观影热潮,还在全球范围内引发了关注,成为中国电影崛起的又一里程 ...
2025-03-03以下的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点 ...
2025-02-28最近,国产AI模型DeepSeek爆火,其创始人梁文峰走进大众视野。《黑神话:悟空》制作人冯骥盛赞DeepSeek为“国运级别的科技成果” ...
2025-02-271.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2025-02-27“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26在数据分析工作中,你可能经常遇到这样的问题: 从浏览到消费的转化率一直很低,那到底该优化哪里呢? 如果你要投放广告该怎么 ...
2025-02-25近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的,尤 ...
2025-02-25挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-25在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-25以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-25