作者:星安果
来源:AirPython
1. 前言
在我们日常工作中,经常会使用 Word、Excel、PPT、PDF 等办公软件。但是,经常会遇到一些重复繁琐的事情,这时候手工操作显得效率极其低下;通过python 实现办公自动化变的很有必要。
接下来的 一系列 文章,我将带大家对 Python 办公自动化做一个全面的总结,绝对的干货!
2. 准备
使用 Python 操作 Excel 文件,常见的方式如下:
xlrd 和 xlwt 是操作 Excel 文件最多的两个依赖库。其中,xlrd 负责读取 Excel 文件,xlwt 可以写入数据到 Excel 文件,我们安装这两个依赖库。
# 安装依赖库 pip3 install xlrd pip3 install xlwt
3. xlrd 读取 Excel
使用 xlrd 中的 open_workbook(filepath) 打开本地一个 Excel 文件。
import xlrd # 打开文件,返回一个工作簿对象 wb = xlrd.open_workbook(file_path)
工作簿对象的 nsheets 属性获取 Sheet 数目,sheet_names() 方法返回所有 Sheet 名称的列表。
# 统计sheet数量 sheets_num, sheets_names = wb.nsheets, wb.sheet_names() print('sheet数量一共有:', sheets_num) print('sheet名称分别为:', sheets_names)
筛选出工作簿中的某一个 Sheet 有 2 种方式,分别是:
# 获取某一个sheet # 通过名称或者索引获取 sheet = wb.sheet_by_index(0) # sheet = wb.sheet_by_name('第一个Sheet') print(sheet)
每一个 sheet 对象都可以利用 name、nrows、ncols 获取 Sheet 名称、行数量、列数量。
另外,row_values(index)、col_values(index) 分别用于获取某一行或某一列的数据列表。
# 获取某一个sheet中,包含的行数量、列数量 sheet_name, sheet_row_count, sheet_column_count = sheet.name, sheet.nrows, sheet.ncols print('当前sheet名称为:', sheet_name, ",一共有:", sheet_row_count, "行;有:", sheet_column_count, "列") # 单独获取某一行数据,索引从0开始 # 比如:获取第2行数据 row_datas = sheet.row_values(1) print('第2行数据为:', row_datas) # 单独获取某一列数据,索引从0开始 # 比如:获取第二列数据 column_datas = sheet.col_values(1) print('第2列数据为:', column_datas)
单元格可以通过行索引、列索引,调用 cell(row_index,column_index) 函数获取。需要注意的是,行索引和列索引都是从 0 开始,即:0 代表第一行。在 xlrd 中,单元格的数据类型包含 6 种,用 ctype 属性对应关系如下:
# 获取某一个单元格的数据 # 比如:获取第2行第1列的单元格的数据 one_cell = sheet.cell(1, 0) # 单元格的值 cell_value = one_cell.value print("单元格的值为:", cell_value) # 单元格数据类型 cell_type = one_cell. print("单元格数据类型为:", cell_type)
最后,如果要获取当前 Sheet 所有单元格中的数据,可以通过遍历所有行、列来操作。
# 获取所有单元格的值 print('表格中所有数据如下:') for r in range(sheet.nrows): for i in range(sheet.ncols): print(sheet.cell(r, i).value)
4. xlwt 写入 Excel
如果想实现将数据写入到 Excel 中,xlwt 就很方便了。
首先,使用 xlwt 的 Workbook() 方法创建一个工作簿对象;
然后,使用工作簿对象的 add_sheet(sheetname) 方法新增 Sheet;
import xlwt sheetname = '第一个Sheet' # 创建一个工作簿对象 wb = xlwt.Workbook() # 添加Sheet,通过sheet名称 sheet = wb.add_sheet(sheetname)
接着,通过 sheet 对象的 write() 方法,按照行索引和列索引,将数据写入到对应单元格中去。
# 将数据写入到Sheet中 # 3个参数分别是:行索引(从0开始)、列索引(从0开始)、单元格的值 # 第一行第一列,写入一个数据 # 写入标题 for index, title in enumerate(self.titles): sheet.write(0, index, title) # 写入值 for index_row, row_values in enumerate(self.values): for index_column, column_value in enumerate(row_values): sheet.write(index_row + 1, index_column, column_value)
需要注意的是,最后必须调用工作簿的 save(filepath),才能在本地生成 Excel 文件。
# 保存文件 # 最后保存文件即可 wb.save(filepath)
5. 进阶用法
接下来,聊聊几个常用的进阶用法
1、获取所有可见的 Sheet
在读取 Sheet 数据时,经常需要过滤隐藏的 Sheet
当 sheet 对象的 visibility 属性值为 0 时,代表此 Sheet 在工作簿中是显示的;否则被隐藏了
def get_all_visiable_sheets(self, wb): """ 获取所有可见的sheet :param wb: :return: """ return list(filter(lambda item: item.visibility == 0, wb.sheets())) # 1、获取所有可看见的sheet sheet_visiable = self.get_all_visiable_sheets(wb) print('所有可见的sheet包含:', sheet_visiable)
2、获取 Sheet 可见行或列
某一个 Sheet 中,可能存在部分行、列被隐藏了。
def get_all_visiable_rows(self, sheet): """ 获取某一个sheet中,可见的行 :param sheet: :return: """ result = [index for index in range(sheet.nrows) if sheet.rowinfo_map[index].hidden == 0] return result def get_all_visiable_columns(self, sheet): """ 获取某一个sheet中,可见的列 :param sheet: :return: """ result = [index for index in range(sheet.ncols) if sheet.colinfo_map[index].hidden == 0] return result
3、获取单元格的样式
以获取单元格字体颜色和背景为例。
def get_cell_bg_color(self, wb, sheet, row_index, col_index): """ 获取某一个单元格的背景颜色 :param wb: :param sheet: :param row_index: :param col_index: :return: """ xfx = sheet.cell_xf_index(row_index, col_index) xf = wb.xf_list[xfx] # 字体颜色 font_color = wb.font_list[xf.font_index].colour_index # 背景颜色 bg_color = xf.background.pattern_colour_index return font_color, bg_color
需要注意的是,使用 xlrd 读取单元格的样式,打开工作簿的时候需要显式定义 formatting_info = True,否则会抛出异常。
# 注意:必须设置formatting_info=True,才能正常获取属性 wb = xlrd.open_workbook(file_path, formatting_info=True) sheet = wb.sheet_by_index(0
6. 最后
搭配使用 xlrd、xlwt,基本上能完成大部分的工作,对于一些复杂的功能,比如:复制、分割、筛选等功能,可以用上 xlutils 这个依赖库。需要指出的是,这个组合对 xlsx 的兼容性不太好;如果需要操作 xlsx 文件,需要先转为 xls,然后再进行。
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13