作者:小伍哥
来源:AI入门学习
上次出了一个在网站「Flourish」画动态条形图的文章【动态条形图视频教程】,需要登录网址很多人可能觉得不方便,现在有大佬出了个python包,只需几行代码就能搞定动态条形图,非常强大,给大家分享下。
一、前期准备工作
1、官方参考文档
GitHub :https://github.com/dexplo/bar_chart_race
说明文档:https://www.dexplo.org/bar_chart_race/
2、软件安装(该安装方法只能安装0.1版本)
pip install bar_chart_race conda install -c conda-forge bar_chart_race
0.2版本需要到github安装
压缩包解压到软件安装目录的/site-packages目录下,利用命令行安装即可
3、安装ffmpeg、ImageMagick
ffmpeg包:不然无法输出 mp4/m4v/mov/等格式的视频,该包比较复杂,需要配置变量环境,具体操作可以看看这个博客:
https://baijiahao.baidu.com/s?id=1660327134602942057&wfr=spider&for=pc
ImageMagick包:如果你要创建GIF,需要安装这个包ImageMagick,安装方法与上述类似。
二、官方数据画图
上述准备都做好了,那就可以开始画图了,利用官方提供的数据,直接加载就可以,我的数据下载没成功,所以自己上传数据绘图,等下回讲怎么自己上传数据。
#加载包 import bar_chart_race as bcr #下载数据 df = bcr.load_dataset('covid19_tutorial') #生成GIF图像 bcr.bar_chart_race(df, 'covid19_horiz.gif') #生成MP4 bcr.bar_chart_race(df, 'covid19_horiz.MP4')
生成的GIF
生成的MP4
三、自己的数据画图
如果是自己的数据,要进行一定的处理,达到画图格式,不然会报错。
#读取数据 df = pd.read_csv('data.csv') #格式处理,需要把日期date转换成索引,不能作为单独一列 df = df.set_index(keys='date') 作者也提供了两个处理数据的函数 bcr.prepare_wide_data bcr.prepare_long_data
原始数据
处理后数据(date转换成了索引)
四、图形美化
作者还提供了很多参数,对图形进行调整和美化,输出的图形更漂亮
1、横转纵 Vertical bars
#orientation='v',.gif变成MP4即可输出视频 bcr.bar_chart_race(df, 'covid19_horiz.gif', orientation='v')
2、升序排序
# 排序方式,sort='asc'-升序 bcr.bar_chart_race(df, 'covid19_horiz.gif', sort='asc')
3、类目数限制,此处设置为最多出现6条
# 设置最多能显示的条目数 n_bars=6 bcr.bar_chart_race(df, 'covid19_horiz.gif', n_bars=6)
4、设置展示类目
# 选取如下5个国家的数据 fixed_order bcr.bar_chart_race(df, 'covid19_horiz.gif', fixed_order=['Iran', 'USA', 'Italy', 'Spain', 'Belgium'])
5、固定坐标轴
#设置数值的最大值,固定数值轴fixed_max bcr.bar_chart_race(df, 'covid19_horiz.gif', fixed_max=True)
6、改变图像帧数
#图像帧数,数值越小,越不流畅。越大,越流畅。默认为10比较流畅,改为3就有些卡顿了 bcr.bar_chart_race(df, 'covid19_horiz.gif', steps_per_period=3)
7、设置帧率,默认为500ms
# 设置20帧的总时间,此处为200ms bcr.bar_chart_race(df, 'covid19_horiz.gif', steps_per_period=20, period_length=200)
8、设置每帧增加的标签时间,默认为False
# 输出gif bcr.bar_chart_race(df, 'covid19_horiz.gif', interpolate_period=True)
9、绘图属性设置
# figsize-设置画布大小,默认(6, 3.5) # dpi-图像分辨率,默认144 # label_bars-显示柱状图的数值信息,默认为True # period_label-显示时间标签信息,默认为True # title-图表标题 bcr.bar_chart_race(df, 'covid19_horiz.gif', figsize=(5, 3), dpi=100, label_bars=False, period_label={'x': .99, 'y': .1, 'ha': 'right', 'color': 'red'}, title='COVID-19 Deaths by Country')
10、配置标签文字大小
# bar_label_size-柱状图标签文字大小 # tick_label_size-坐标轴标签文字大小 # title_size-标题标签文字大小 bcr.bar_chart_race(df, 'covid19_horiz.gif', bar_label_size=4, tick_label_size=5, title='COVID-19 Deaths by Country', title_size='smaller')
11、全局字体属性设置
# shared_fontdict-全局字体属性 bcr.bar_chart_race(df, 'covid19_horiz.gif', title='COVID-19 Deaths by Country', shared_fontdict={'family': 'Helvetica', 'weight': 'bold', 'color': 'rebeccapurple'})
12、透明度,边框等设置
# bar_kwargs-条形图属性设置参数 bcr.bar_chart_race(df, 'covid19_horiz.gif', bar_kwargs={'alpha': .2, 'ec': 'black', 'lw': 3})
13、日期格式设置
# 设置日期格式,默认为'%Y-%m-%d' bcr.bar_chart_race(df, 'covid19_horiz.gif', period_fmt='%b %-d, %Y')
14、改日期标签为数值格式
# 设置日期标签为数值 bcr.bar_chart_race(df.reset_index(drop=True), 'covid19_horiz.gif', interpolate_period=True, period_fmt='Index value - {x:.2f}')
15、添加汇总统计
#设置文本位置、数值、大小、颜色等 def summary(values, ranks): total_deaths = int(round(values.sum(), -2)) s = f'Total Deaths - {total_deaths:,.0f}' return {'x': .99, 'y': .05, 's': s, 'ha': 'right', 'size': 8} # 添加文本 bcr.bar_chart_race(df, 'covid19_horiz.gif', period_summary_func=summary
16、添加垂直条参考线(平均值、分位数等)
# 设置垂直条数值,分位数 def func(values, ranks): return values.quantile(.9) # 添加垂直条 bcr.bar_chart_race(df, 'covid19_horiz.gif', perpendicular_bar_func=func)
17、设置柱状图颜色
'dark12' is the default colormap. If there are more than 10 columns, then the default colormap will be 'dark24'
# 设置柱状图颜色 bcr.bar_chart_race(df, 'covid19_horiz.gif', cmap='accent')
18、颜色不重复
#filter_column_colors保证颜色不重复 bcr.bar_chart_race(df, 'covid19_horiz.gif', cmap='accent', filter_column_colors=True)
19、中文支持配置
中文配置只需在第三方库的_make_chart.py文件中,加入如下三行代码。
#中文显示 plt.rcParams['font.sans-serif'] = ['SimHei'] #Windows plt.rcParams['font.sans-serif'] = ['Hiragino Sans GB'] #Mac plt.rcParams['axes.unicode_minus'] = False
20、自定义颜色
此外通过在「_colormaps.py」文件中添加颜色信息,经cmap引用,即可自定义配置颜色。
colormaps = { "new_colors": [ '#ff812c', '#ff5a5a', '#00c5d2', '#a64dff', '#4e70f0', '#f95dba', '#ffce2b']}
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
作为数据分析领域的探险家,我们常常面临着选择正确工具和技能的挑战。在这个数字化时代,学会并精通适合行业需求的工具显得尤为 ...
2024-12-03在数据分析领域,掌握多种软件和编程语言至关重要,选择合适的工具取决于个人需求和背景。让我们一起探索常用的数据分析工具及其 ...
2024-12-03在数据驱动的时代,数据分析成为了关键的技能。选择合适的数据分析工具至关重要,因为它们直接影响着你对数据的理解和分析效果。 ...
2024-12-03在当今数字化时代,数据分析已经成为各行各业中至关重要的角色。随着技术的迅猛发展和数据量的爆炸增长,数据分析师需要不断提升 ...
2024-12-03在当今数据驱动的世界中,数据分析已成为企业决策制定和战略规划的关键。其中,数据可视化是将复杂数据转化为简洁、易懂图形的重 ...
2024-12-03在当今信息爆炸的时代,数据扮演着至关重要的角色。学会利用数据进行分析不仅是一种技能,更是一种战略性决策工具。本文将探讨学 ...
2024-12-03揭示数据的无限价值 学习数据分析不仅仅是一种技能,更是探索信息海洋中宝藏的钥匙。数据分析的实用性体现在多个领域,如企业决 ...
2024-12-03在当今信息爆炸的时代,数据扮演着至关重要的角色。成为一名优秀的数据分析师,不仅需要具备技术实力,更需要拥有跨学科的知识储 ...
2024-12-03在当今数据驱动的世界中,成为一名优秀的数据分析师需要具备多方面的技能和知识。从统计学基础到机器学习算法,再到沟通能力和业 ...
2024-12-03在当今信息爆炸的时代,数据分析扮演着至关重要的角色。从商业决策到科学研究,数据分析为我们提供了深刻的洞察力和指导方向。然 ...
2024-12-03数据分析的基础知识 数据分析是一个多步骤且复杂的过程,旨在从数据中提取有价值信息以支持决策。这涉及数据的收集、清洗、转换 ...
2024-12-03数据分析是一门引人入胜且充满挑战的领域,它串联着数据的意义与我们的决策需求。无论你是初学者还是经验丰富的专家,掌握数据分 ...
2024-12-03数据分析培训的就业前景展现出令人振奋的态势。随着大数据、人工智能等前沿技术的快速发展,数据分析在各行各业中的应用愈发广泛 ...
2024-12-03在当今数字化时代,数据分析技能的重要性日益凸显。随着大数据、人工智能等领域的迅速发展,数据分析已经成为各行各业中备受瞩目 ...
2024-12-03作为一名数据分析师,除了扎实的数学基础外,掌握软技能同样至关重要。本文将深入探讨数据分析领域中不可或缺的软技能,并结合个 ...
2024-12-03市场需求与技术驱动 数据分析师的职业前景广阔,市场需求旺盛。在金融、医疗、零售、科技等领域,企业对数据分析师的需求不断攀 ...
2024-12-03市场需求与前景 数据分析师的职业前景广阔,伴随着多元化技能要求和清晰的职业发展路径。 在金融、医疗、零售、科技等领域, ...
2024-12-03作为数据分析师,掌握正确的工具和技能至关重要。在当今数据驱动的世界中,Python作为一种多才多艺的编程语言,在数据分析领域扮 ...
2024-12-03在当今数据驱动的世界中,数据分析师扮演着至关重要的角色。他们需要掌握各种工具和技能来从海量数据中提炼出有价值的信息。其中 ...
2024-12-03数据分析实践是一门引人入胜的艺术,融合了技术与创意,为各行业带来前所未有的洞察力与决策支持。本文将探讨数据分析实战案例的 ...
2024-12-03