京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:丁点helper
来源:丁点帮你
上篇文章中,我们用世界银行的例子给大家介绍了R语言散点图怎么画,那折线图呢?
绘制折线图
如果将散点图上的点从左往右连接起来,就会得到一个折线图。今天我们以R中自带的Orange 数据集为例,来学习折线图的画法,该数据集中包含五种橘树的树龄和年轮数据。要考察橘树的年轮如何随着树龄变化,先画个散点图看看:
# 先看第一种橘树,提取第一种树的数据,保存在t1中 t1 <- subset(Orange, Tree==1)
戳此复习subset()函数的功能。
# 绘制散点图 plot(t1$age, t1$circumference, xlab="Age (days)", ylab="Circumference (mm)", main="Orange Tree 1 Growth")
再画折线图:
# 绘制折线图 plot(t1$age, t1$circumference, xlab="Age (days)", ylab="Circumference (mm)", main="Orange Tree 1 Growth", type="b")
可以发现,绘制折线图使用的仍是plot()函数,其代码只比散点图的多了一个用来设置图形外观的命令:type='b','b'表示用线条将点连接起来,因此我们就得到了下图:
折线图的图形外观还可以有很多种,均可通过type命令来完成,下表展示了type可选的取值:
选取上表中各种类型的type值,就可以得到各式各样的折线图:
试着调整图形
虽然上面的图形已经可以准确表达数据信息,但有时自动生成的图形可能无法满足需求。
比如,我们想把上面的散点图和折线图放在同一张图中,便于比较,或者想改变文字的字体、颜色等…… 此时,可以在用plot()作图前,先用par()函数设置你想改变的参数:
# 设置par()函数
par(mfrow=c(1,2),bty='l',cex.main=1.5,
col.main='deepskyblue4',font.lab=2,
family='Times New Roman')
# 绘制散点图
plot(t1$age, t1$circumference,
xlab="Age (days)",
ylab="Circumference (mm)",
main="Orange Tree 1 Growth")
# 绘制折线图
plot(t1$age, t1$circumference,
xlab="Age (days)",
ylab="Circumference (mm)",
main="Orange Tree 1 Growth",col='deepskyblue4',
type="b")
大家可以先将这段代码复制到R中运行(记得先用本文开头的方法生成t1这个对象),看看出现了什么?
par(mfrow=c(1,2),bty='l',cex.main=1.5,
col.main='deepskyblue4',font.lab=2,
family='Times New Roman')
par()是R中用来设置图形参数的函数。
上面的代码中,mfrow是图形整体布局命令,不是针对某个具体的图形而言的,而是对整个绘图区域的布局。定义整体有几行、几列图形,其赋值形式为c(行数,列数);
bty是设置图形边框类型的函数,其取值及效果如下图:
cex.main:设置标题文本的放大倍数,还可用cex.axis 和 cex.lab分别设置坐标轴刻度值和名称文本的放大倍数;
col.main:设置文本标题的颜色,大家能猜出坐标轴刻度值和名称的颜色如何设置吗?欢迎留言呀~
font.lab:设置坐标轴名称的字型:
family:设置图形中所有文本的字体。
最终得到的图形如下,你还能想到哪些需要改进或调整的地方呢,我们可以作为今后讲授的内容
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31