SPSS实例教程:二分类Logistic回归
某呼吸内科医生拟探讨吸烟与肺癌发生之间的关系,开展了一项成组设计的病例对照研究。选择该科室内肺癌患者为病例组,选择医院内其它科室的非肺癌患者为对照组。通过查阅病历、问卷调查的方式收集了病例组和对照组的以下信息:性别、年龄、BMI、COPD病史和是否吸烟。变量的赋值和部分原始数据见表1和表2。该医生应该如何分析?
表1. 肺癌危险因素分析研究的变量与赋值
表2. 部分原始数据
2、对数据结构的分析
该设计中,因变量为二分类,自变量(病例对照研究中称为暴露因素)有二分类变量(性别、BMI和是否吸烟)、连续变量(年龄)和有序多分类变量(COPD病史)。要探讨二分类因变量与自变量之间的关系,应采用二分类Logistic回归模型进行分析。
在进行二分类Logistic回归(包括其它Logistic回归)分析前,如果样本不多而变量较多,建议先通过单变量分析(t检验、卡方检验等)考察所有自变量与因变量之间的关系,筛掉一些可能无意义的变量,再进行多因素分析,这样可以保证结果更加可靠。即使样本足够大,也不建议直接把所有的变量放入方程直接分析,一定要先弄清楚各个变量之间的相互关系,确定自变量进入方程的形式,这样才能有效的进行分析。
本例中单变量分析的结果见表3(常作为研究报告或论文中的表1)。
表3. 病例组和对照组暴露因素的单因素比较
单因素分析中,病例组和对照组之间的差异有统计学意义的自变量包括:性别、COPD病史和是否吸烟。
此时,应当考虑应该将哪些自变量纳入Logistic回归模型。一般情况下,建议纳入的变量有:1)单因素分析差异有统计学意义的变量(此时,最好将P值放宽一些,比如0.1或0.15等,避免漏掉一些重要因素);2)单因素分析时,没有发现差异有统计学意义,但是临床上认为与因变量关系密切的自变量。
本研究中,年龄和BMI与因变量没有统计学关联。但是,临床认为年龄也是肺癌发生的可能危险因素,因此Logistic回归模型中,纳入以下自变量:性别、年龄、COPD病史和是否吸烟。
此外,对于连续变量,如果仅仅是为了调整该变量带来的混杂(不关心该变量的OR值),则可以直接将改变量纳入Logistic回归模型;如果关心该变量对因变量的影响程度(关心该变量的OR值),一般不直接将该连续变量纳入模型,而是将连续变量转化为有序多分类变量后纳入模型。 这是因为,在Logistic回归中直接纳入连续变量,那么对于该变量的OR值的意义为:该变量每升高一个单位,发生结局事件的风险变化(比如年龄每增加1岁,患肺癌的风险增加1.02倍)。这种解释在临床上大多数是没有意义的。
3、SPSS分析方法
(1)数据录入SPSS
(2)选择Analyze→Regression→Binary Logistic
(3)选项设置
1)主对话框设置:将因变量cancer送入Dependent框中,将纳入模型的自变量sex, age, BMI和COPD变量Covariates中。本研究中,纳入age变量仅仅是为了调整该变量带来的混杂(不关心该变量的OR值),因此将age直接将改变量纳入Logistic回归模型。
对于自变量筛选的方法(Method对话框),SPSS提供了7种选择,使用各种方法的结果略有不同,读者可相互印证。各种方法之间的差别在于变量筛选方法不同,其中Forward: LR法(基于最大似然估计的向前逐步回归法)的结果相对可靠,但最终模型的选择还需要获得专业理论的支持。
2)Categorical设置:该选项可将多分类变量(包括有序多分类和无序多分类)变换成哑变量,指定某一分类为参照。本研究中,COPD是多分类变量,我们指定“无COPD病史”的研究对象为参照组,分别比较“轻/中度”和“重度”组相对于参照组患肺癌的风险变化。
点击Categorical→将左侧Covariates中的COPD变量送入右侧Categorical Covariates中。点击Contrast右侧下拉菜单,选择Indicator(该下拉菜单内的选项是几种与参照比较的方式,Indicator方式最常用,其比较方法为:第一类或最后一类为参照类,每一类与参照类比较)。
在Reference Category的右侧选择First(表示选择变量COPD中,赋值最小的,即“0”作为参照。如果选择Last则表示以赋值最大的作为参照)→点击Change→点击Continue。
3)Options设置中,勾选如下选项及其意义:
Hosmer-Lemeshow goodness-of-fit:检验模型的拟合优度;
CI for exp(B):结果给出OR值的95%可信区间;
Display→At last step:仅展示变量筛选的最后一步结果。
→Continue→回到主界面→OK
4、结果解读
Logistic回归的结果给出了很多表格,我们仅需要重点关注三个表格。
(1)Omnibus Tests of Model Coefficients:模型系数的综合检验。其中Model一行输出了Logistic回归模型中所有参数是否均为0的似然比检验结果。P<0.05表示本次拟合的模型中,纳入的变量中,至少有一个变量的OR值有统计学意义,即模型总体有意义。
(2)Hosmer and Lemeshow Test:是检验模型的拟合优度。当P值不小于检验水准时(即P>0.05),认为当前数据中的信息已经被充分提取,模型拟合优度较高。
(3)Variables in the Equation:
1)本次统计过程中筛选变量的方式是Forward: LR法,Variables in the Equation表格中列出了最终筛选进入模型的变量和其参数。其中Sig.一列表示相应变量在模型中的P值,Exp (B)和95% CI for EXP (B)表示相应变量的OR值和其95%可信区间。
对于sex, smoke这两个二分类变量,OR值的含义为:相对于赋值较低的研究对象(sex赋值为“0”的为女性;smoke赋值为“0”的为不吸烟),赋值较高的研究对象(男性、吸烟者)发生肺癌的风险为是多少(2.308倍、3.446倍)。
2)对于多分类变量COPD,设置中以“0”组作为参照,则得到的结果是“1”组、“2”组分别对应于“0”组的OR值。在Logistic回归中,设置过哑变量的多分类变量是同进同出的,即只要有一组相对于参照组的OR值有统计学意义,则该变量的全部分组均纳入模型。COPD变量的第一行没有OR值,其P值代表该变量总体检验的差异有统计学意义(即至少有一组相对于参照组的OR值有统计学意义)。
3)本研究中的COPD变量以“0”组作为参照, 因此COPD (1)行的参数中给出了“1”相对于“0”组的OR值和P值,而在COPD (2)行的参数中给出了“2”组相对于“0”组的OR值和P值。数据分析培训
4)Constant为回归方程的截距,在模型中一般没有实际意义,大家可不必关注。
5、撰写结论
本研究发现,85例肺癌患者中,吸烟者67例(78.8%);259例非肺癌患者中,吸烟者153例(59.1%),肺癌患者和非肺癌患者中的吸烟率的差异有统计学意义(χ2=10.829, P<0.01)。Logistic回归模型在调整了性别和COPD病史后,吸烟者相对于不吸烟者,发生肺癌的风险增加(OR=3.45, 95% CI: 1.86-6.40)。
多变量分析的结果见表4(常作为研究报告或论文中的表2)。
表4. 肺癌危险因素的Logistic回归分析
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12