大数据营销的下一步
在互联网和大数据出现之前,我们通过经验来判断事务并采取行动。而经验在本质上,就是过去所积累的全部大数据在人脑中的反映。
受益于计算机的发明,我们对于数据的处理能力越来越强,处理速度也越来越快;紧接着,互联网的出现通过打破空间藩篱而提高了时间的利用率,我们对数据的搜索和收集变得无远弗届,数据广度与深度呈现裂变式增长。
这两大技术的发展将带来哪些变化?
基于过去大数据收集与处理的下一步,就是帮助判断和预测未来,从而促进当下的行动。在这方面最典型的例子就是Google。作为全球最大搜索引擎,Google拥有以太级别的数据和遍布全球的36个数据中心。比如:Google趋势图应用可以通过用户对于搜索词的关注度,很快发现和理解社会上的热点趋势。而Google Instant则会在用户输入关键词的过程中,迅速预测可能的搜索结果。据称,大数据为谷歌每天带来近2300万美元的收入。
那么,对于营销来说,大数据的价值又如何体现?
商业环境受制于诸多不可控的外部因素,宏观方面比如政策、经济大环境、社会文化等,微观层面则涉及行业走向、竞争对手、潜在替代者、消费者需求甚至企业内部管理等各方面。因此,商业对于大数据的依赖性更强。商业互联网化之后,提出的第一个口号就是 Data Drive Business(数据驱动商业)。
就营销这一细分领域来说,大数据的价值更为明显。比如:如何发现消费者需求?如何圈定准确的目标受众?如何在正确的时间、正确的地点、以正确的方式传达给正确的消费者正确的内容?如何促使消费者行动?如何以销定产并实现柔性生产?如何设计制造最具市场潜力的产品?如何提高营销的效率和投入产出比?……
要回答这些问题,就必须对涉及营销的整个过程甚至外部环境,都要有全面和透彻的了解。而大数据的作用就在于:通过结构化和非结构化的数据收集,将以往不可见不可描述的部分,变得可视化,从而通过分析处理来寻找规律、预测未来、帮助判断和采取行动。
毫无疑问,大数据的价值显而易见。但是,要想充分发挥大数据的威力,要做到两方面的极致化:“对更加垂直化、细分化的小数据的纵深挖掘”以及“对更加广泛、甚至转瞬即逝的整体样本的全面覆盖”。
对更加垂直化、细分化的小数据的纵深挖掘
罗辑思维创始人罗振宇曾经说过这样一句话:“ 共享经济这件事其实遮盖了人类经济发展的总趋势。这个总趋势是不可逆的,叫分工再合作。”
技术的发展带动分工的细化,而分工的细化保证了每个环节的专业化。精细化分工如同一个个齿轮,带动整个机器不断自我进化。
在互联网领域也同样如此。跑马圈地的草莽时代在2016年渐渐谢幕,地推、并购等粗放增长方式呈现乏力迹象,互联网公司开始专心打磨产品,向纵深的垂直化和精细化运营进化。
各细分领域开始出现新的独角兽,比如一些小而美的app:美食生活类app Enjoy、精品短视频app Eyepetizer等,都拥有了一批忠实粉丝。
此外,诸如BAT这样的大平台也开始了精细化、垂直化的探索。而他们的追赶者们也在垂直化的路上走得更远一些。例如搜狗,除了常规的图片、视频、音乐等垂直搜索之外,搜狗结合自身技术特点,先后与腾讯、知乎、微软、丁香园等展开合作,推出微信搜索、知乎搜索、英文搜索、学术搜索、明医搜索等更加精细化、差异化的独家特色搜索产品,通过满足不同需求,增强用户黏性。
在垂直领域的深挖,使搜狗创造了一系列差异化、垂直化的产品,聚拢了拥有差异化需求的用户群体,根据这些用户在垂直产品上的多方网络行为,建立了行业标签、商业标签、人群属性标签、地理位置标签等完整的一套标签体系,进而提高大数据营销的精准度,帮助企业进行更加精准的投放。
对更加广泛、甚至转瞬即逝的整体样本的全面覆盖
目前,几乎所有大数据营销产品和服务都是基于数据集市(data mart)的概念。简单来说,它基于某一需求,定向搜集相关数据构成大数据样本库。好处是目的和方向比较明确,如同一个人先产生问题再去寻求答案一样;但缺点在于,这种收集方式会在前期遗漏部分有价值的数据,或者忽视掉一些转瞬即逝的数据——正因为目标明确,反而只见树木不见森林。
举个例子:如果利用大数据来进行用户画像,这就产生了一大问题:先入为主的定向切入,使用于用户画像的数据并不完善,从而会影响到分析的精度,进一步误导营销决策。
在特朗普大数据民调失误这一案例中,分析师就是在希拉里必胜新闻的刺激下,错估了形势,预设立场,通过先入为主的定向切入,忽视了特朗普在佛罗里达和其他摇摆州的巨大领先优势,从而在数据搜集上有意无意地遗漏了一些重要数据。大数据的蝴蝶在收集端挥了挥翅膀,结论端差之毫厘谬以千里。
正是因为注意到了这一问题,现在业内开始有人重新提起数据湖泊(data lake)的概念。
数据湖泊最先出现在2011年Forbes杂志James Dixon所写的《大数据需要一个大的新型架构》一文中。与目标明确的数据集市不同,数据湖泊带来了更大的弹性。
简单地讲,数据湖泊倡导存储每一个可能有用的细节数据,把忽视的、遗漏的数据重新挖掘和存储起来,当需要时再进行一站式统一的、交叉的分析。这样做的好处是不遗漏任何有价值的数据,即使它非常微小、转瞬即逝、或当时看起来没有价值。
比如:在之前的大数据采集中,可能会漏掉潜在消费群的信息,忽略掉可能的销售机会。而尽可能采集更多更全面(哪怕是看起来不相关的数据,也可能内部存在一定的关联)的大数据,则有利于企业制定更精准的营销策略。
因此,数据湖泊的成立有赖于两个维度的拓展:上一节提到的垂直纵深数据的收集,以及更为广泛的全域数据的收集。
举个比较微观的例子:欧洲某大银行每年有650个直邮营销推广项目,发放将近6,000万封电子直邮,但是他们的营销效率却逐年下降。这家银行发现问题在于:虽然公司有不同的渠道接触客户,但是每个渠道都有自己的客户接触策略,这就造成客户资料和历史数据信息分散,没有形成客户关系的全貌。全域数据的缺失,使得公司无法根据客户特性来制定更为精准的个性化营销方案。
如今,媒介碎片化和人群移动化的趋势,使收集全域数据面临着新的挑战:如何收集移动数据?如何实现跨屏数据打通?如何搜集更多形式各异的非结构化数据?
对于第一个问题,目前的解决方案一般是尽最大可能覆盖更多的移动流量入口。再以搜狗搜索为例,不仅拥有移动端的QQ浏览器、搜狗浏览器、腾讯网、搜狐网等强势入口,2016年搜狗还与华为、三星、OPPO等大部分主流手机厂商达成合作。据悉,每天有超2亿台手机默认使用搜狗搜索。
在移动时代,人们不光在行为上呈现碎片化的特征,使用的设备也日趋丰富多元,这就带来了第二个问题:跨屏数据的收集。搜狗的无线端和PC端可以依托搜狗自有帐号体系、合作伙伴数据以及第三方数据,实现跨屏打通,进行无缝数据跟踪,在场景上将用户搜索、浏览和输入的跨屏数据进行融合,提供更有价值的投放依据。
目前,即使在非结构化数据的搜集上,也仅仅局限在文字、图片等简单表现形式上,但搜狗对于数据的搜集还跨越到了语音领域。2016年7月,搜狗推出知音引擎,不仅可以搜集语音数据,还可以进行理解和思考,进而提高语音识别准确率,再次丰富了数据搜集的类型。
更加细分的垂直化数据+跨屏多元化的全域数据,在源头上确保了数据的准确与全面;同时,借助人工智能日益增强的计算和分析能力,大数据将为企业决策提供更为精准的指引,使营销步入真正的智能时代。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20