
来源:麦叔编程
作者:麦叔
作为一个搞技术的金融从业者,看到这个开源项目的时候,我的内心就两个字:卧槽!
从金融角度上,它涵盖了全面的股票数据,做数据分析和排行,并给出购买参考建议。
虽然市面上专业的App也有这些数据和功能,但这可是你自己用代码运行的项目。你可以在此基础上,实践你的想法,修改代码,做你的分析,建立自己的优势。
如果只是会用App和街上的大妈有什么区别?那个金融从业者不会自己做数据分析?
从技术角度上,这个开源项目非常综合,涵盖了:
如果一个人能把这个项目从头到尾学会,搞定。他找到一份Python开发的工作应该问题不大。
我觉得吧:
我们其实不缺好的开源项目,缺的是从头到尾去研究透一个项目的专注和决心!
你觉得呢?留言说说你的看法。
找到一个适合自己的好的项目,去把它研究透,好过泛泛的去看100个开源项目。
不要太在意技术是否主流,技术是相通的,同样都是Python,解决的问题也是一样的,学好一个很快就能学好另外一个。
这个项目就特别适合做金融分析,或者对金融,炒股有兴趣的,并且在学Python的人,可以一举三得:
特点提醒:这个项目主要是作为Python学习目的推荐给大家,也推荐给做金融分析的人!
但是我不建议小白盲目去炒股,尤其是现在大盘已经站上了3600点,已经到了街上大妈都在讨论股票的时候!如果现在进去,做炮灰的概率很大。
这是一个基于Python的全栈股票系统,先来上截两张图:
它每天定时(6点)抓取股票数据,计算指标,然后给出推荐。用户使用网页查看数据,看可视化报表,定制的自己的需求。
所谓全栈,一般指后端开发和网页开发通吃。我们来分的更细一点,这个项目涵盖这些内容:
我建议分几个步骤去学习:
从技术上,我们只要把别人打包好的Docker文件下载下来,直接运行就行了,不用安装Python,配置各种包。
这里有个例外,一般数据库是需要安装好的,这个项目也是的,需要先自己安装和启动MySQL数据库。
jobs文件夹 - 这个是抓取数据的文件夹,先有数据,才能分析和展示web文件夹 - 这个网站和数据展示部分
下面是我用Docker成功运行项目的步骤:
https://docs.docker.com/get-docker/
https://dev.mysql.com/downloads/
3. 下载最新的Docker文件
docker pull pythonstock/pythonstock:latest
mkdir -p /tmp/data/notebooks #创建临时目录
docker run -itd --name stock
-v /tmp/data/notebooks:/data/notebooks
-p 8888:8888
-p 9999:9999
-e MYSQL_HOST=host.docker.internal # for using Docker-for-mac or Docker-for-Windows 18.03+
-e MYSQL_USER=root
-e MYSQL_PWD=root
-e MYSQL_DB=stock_data
pythonstock/pythonstock:latest
网站系统: http://localhost:9999
用jupyter做分析: http://localhost:8888
系统也支持通过Jupyter做实时的数据分析:
但登录Jupyter需要先获取token:
docker exec -it stock bash
jupyter notebook list
下面这是项目链接,点击查看原文也可以跳转到项目页面:https://github.com/pythonstock/stock
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08