来源:早起Python
作者:陈熹、刘早起
大家好,我是早起。
之前有分享过如何用Python发送邮件的文章,今天再分享一个如何用几行Python代码让财务部妹子追着喊666的实用案例。
最近公司要发奖金,需要财务部妹子给每个员工发一封邮件,现在全公司 10 个部门每个人的奖金情况已经计算好了,并根据部门分别制作了 10 张表格:
每个奖金表格内容大致如下:
同时有一份 Excel 文件邮件地址.xlsx,里面有各部门负责人的邮箱:
首先第一个需求很简单:给各部门负责人发送相应部门的奖金附件
这个需求不同于群发,只要把所有人邮件地址加进来一键发送就可以,而是需要点对点的单发邮件。如果部门或者收件人的数量继续增加,无非会增加工作难度、降低工作效率,因此需要 Python 出手解决。
当然如果就这么点小事,妹子辛苦一点手动发送也能解决,下面还有一个需求
原有部门奖金表格新增加了一列个人邮箱(邮箱地址均为虚构),如下
不同于上面需求,给部分负责人发送总奖金表格的同时,也需要给各部分每一个人发送自己的奖金金额,发送内容为:
“
尊敬的xxx部门 xxx 您好,您的工号是 xxx,您2020年的奖金为 xxx
”
这个需求如果再手动的话,工作量瞬间就上去了,下面我们讲解如何用Python优雅、快速的解决!
初级需求是一个点对点单独发送,简单的思路可以是:
“
逐行遍历 邮件地址.xlsx 取各部门名称和负责人邮箱地址
根据部门名称去 奖金发放 文件夹下获取 奖金_部门名称.xlsx 作为附件
再遍历 邮件地址.xlsx的循环体内完成邮件的发送
”
如果加上了个人邮箱其实也很简单,在原先代码的基础上打开并遍历 奖金_部门名称.xlsx 文件,获取每个人的工号、姓名、邮箱地址、奖金数,而部门在打开 Excel 时就确定了,最后根据上面获取的信息用 yagmail 组装成新的邮件信息并发送
先着手实现基本需求。由于只涉及 Excel 文件的读取以及邮件的发送,需要导入 openpyxl 的 load_workbook 方法以及 yagmail 库,如果不把密码(授权码)明文显示而存储在系统密钥环中则需要额外导入 keyring 库
from openpyxl import load_workbook import yagmail import keyring
password = keyring.get_password('yagmail', 'username') # 需要在命令号中用 keyring.set_password('yagmail', username, password) 预先存好
读取并遍历 邮件地址.xlsx:
path = r'C:xxx' # 根据实际附件文件和邮件地址 Excel 文件存放的路径确定 workbook = load_workbook(path + r'邮件地址.xlsx')
sheet = workbook.active
n = 0 # 设置变量跳过表头 for row in sheet.rows:
if n:
department = row[0].value
dep_address = row[1].value
print(department, dep_address)
n += 1
解析完成后就可以组装准备发送的邮件了。以用 QQ 邮箱发送邮件为例,复习一下组装邮件需要的内容:
# 用服务器、用户名、密码实例化邮件 mail = yagmail.SMTP(user='xxx@qq.com', password = password, host='smtp.qq.com') # 待发送的内容 contents = ['第一段内容', '第二段内容'] # 发送邮件 mail.send('收件人邮箱', '邮件标题', contents)
如果在 contents 中放绝对路径,yagmail 会自动将其作为附件,非常智能。这也是本需求能实现的重要依托。
复习了这些知识点我们就可以完善上面的遍历代码
n = 0 for row in sheet.rows:
if n:
department = row[0].value
dep_address = row[1].value
# print(department, dep_address) mail_dep = yagmail.SMTP(user='xxx@qq.com', password=password, host='smtp.qq.com')
contents = [f'您好,请查收{department}的奖金情况', path + f'奖金发放奖金_{department}']
mail_dep.send(dep_address, f'{department}奖金情况', contents)
n += 1
基本需求完成后,就考虑升级的需求
两个需求衔接的关键在于确定好给哪个部门的负责人发邮件时,就打开这个部门的奖金情况表,先给部门成员一一发文字邮件,最后给部门负责人发附件。
如果梳理清楚这一环,那么循环的嵌套关系就很明确了:
n = 0 for row in sheet.rows:
if n:
department = row[0].value
dep_address = row[1].value
# print(department, dep_address) mail_dep = yagmail.SMTP(user='xxx@qq.com', password=password, host='smtp.qq.com')
# 这一部分就是升级需求的代码 # 根据前面的部门信息打开相应的表格获取每个人的情况 workbook_new = load_workbook(path + f'奖金发放奖金_{department}')
sheet_new = workbook_new.active
m = 0 for i in sheet_new.rows:
if m:
id = i[0].value # 工号 name = i[1].value # 姓名 address = i[2].value # 个人邮箱地址 money = i[3].value # 奖金数 # 根据获取到的个人信息组装成新的邮件发送 mail = yagmail.SMTP(user='xxx@qq.com', password=password, host='smtp.qq.com')
contents = [f'尊敬的 {department} {name} 您好,您的工号是 {id},您2020年的奖金为 {money}']
mail.send(address, f'{department}-{name}奖金情况', contents)
m += 1 contents_dep = [f'您好,请查收{department}的奖金情况', path + f'奖金发放奖金_{department}']
mail_dep.send(dep_address, f'{department}奖金情况', contents_dep)
n += 1
因本文的邮箱都是虚构的,就不展示具体发送成功的效果了。
至此,短短30余行代码就成功安抚了妹子交集的心态,并约个饭希望好好聊一聊如何用Python偷懒,这些就不再分享了
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20