来源:麦叔编程
作者:麦叔
到了过年的时候了,你要回老家过年吗?如果回老家过年,需要做核算检测。我也正在犹豫中。你们做了吗?
核酸检测本身是一个比较费时,费力,费钱的复杂过程,所以现在低风险地区都是采用的10人一组混合检验的。
具体来说就是将采集自10个人的10支拭子样本集合于1个采集管中进行核酸检测。
混检筛查中一旦发现阳性或弱阳性,将会立即进行追溯,通知相关部门对该混采管的10个受试者暂时单独隔离,
并重新采集单管拭子进行复核,再确定这10个人当中到底哪一个是阳性。
如果检测结果是阴性,意味着这10个样本全是阴性,混检的10个人都是安全的。
看到这个过程后,作为程序员的我禁不住拍了一下自己的大腿,这不就是个很简单算法嘛!
但是这个小小的算法把检验的成本降低了接近90%,把检验的速度提高了近10倍!算法真是太奇妙了!
顺着这个思路,有没有更好的算法,进一步加快这个过程呢?理论上来说,如果用二分法,
可以把14亿次检测减少到大概23万次左右。而现在10比1混合检验的次数大约是1.4亿次。
关于算法,本文下面再讨论。咱们先说一个大家关心的问题。
把10个人的样本混在一起,咋一听觉得很不靠谱,实际上还是很靠谱的。但是会不会出现检验不准的情况呢?确实存在一些潜在问题。
以下专业分析来自知乎,作者:返朴https://www.zhihu.com/question/404866690/answer/1326422005
假阴性率会增加,准确度下降。举两个假设的情况给大家解释为什么假阴性率会增加:
情况1:假设使用的是饱受争议的美国CDC的核酸RT-PCR检测试剂盒。这个试剂盒一共测三个新冠基因片段,
其中两个是新冠特异的基因片段,第三个是所有类似于SARS的冠状病毒都有的基因片段。
除此以外,还包括一个控制探针 (control probe)针对人的RNase P基因。这个探针的目的是用来保障取样足够和RNA提纯过程没有出错。
如果取样不够,或者RNA纯化出错导致RNA降解,探针就读不出数值,检测结果就是“无效(invalid)”,还需要重新再测。
如果有位阳性感染者,在鼻咽拭子取样的时候,样本量取得不够。如果对这个样本用美国CDC的核酸试剂盒进行单独的核酸检测,虽然新冠基因是阴性,RNase P控制探针的结果也是阴性,最终结果就显示“无效(invalid)”,还需要重新再测。
然而,如果把这个人的样本和其他4个人混合在一起,进行混合核酸测试——其他4位都是核酸阴性,且取到了足够的样本。这时,用美国CDC的核酸试剂盒去检测5个人的混合样本,测出新冠基因是阴性,RNase P的控制探针是阳性(表明样本取样提纯没有出错),因此得出结论:这5位都是核酸阴性。那位阳性感染者得到的就是一个“假阴性”结果。
情况2:不同核酸检测的设计不同,导致试剂盒的敏感度和特异性也不同。假设所用核酸试剂盒的敏感度是500个新冠RNA/毫升。有一位阳性感染者取样,提纯样本里面的RNA以后,用1µg总RNA量来做RT-PCR,里面包含了500个新冠RNA/毫升,那么检测结果是阳性。可是如果他的样本和其他4个人混在一起检测,还是用1µg总RNA量来做RT-PCR,假设是等量混合,那么他的RNA实际只占~20%。1µg总混合RNA里面大约只有100个新冠RNA/毫升。受试剂盒敏感度的限制,结果会是假阴性。
但这不是说混检就不能实行,而是有一定的限制:
(1)每个样本的采集量要足,否则会出现稀释后出现假阴性的问题
(2)只对低风险地区实行混检
下面用算法简单模拟采样数量和检测数量,其实也不是什么算法,就是两个数学公式:
total_pop = 1400000000 #总人口 rate = 0.00001 #感染率 group_size = 10
#每组人数 check_num = 0
caiyang_num = 0 #计算采用数量:总人数 + 要重复采样的数量 caiyang_num = total_pop
+ (total_pop * rate) *
group_size #计算检测次数:人数除以10 + 重复检测数 check_num = total_pop / group_size
+ (total_pop * rate) *
group_size print(f'采用数:{caiyang_num:,}, 检测数量:{check_num:,}')
运行结果:采用数:1,400,140,000.0, 检测数量:140,140,000.0
假设感染率为10万分之一的情况下,要采样14亿零14万次;要检测1亿4千万零14万次。
如果调整每100人一组检测:采用数:1,401,400,000.0, 检测数量:15,400,000.0
采用数增加了100多万次,而检测次数减少了1亿2千多万次。也就是说分组能极大的减少检测次数。
但是受制于准确度的影响,我们这里只是探讨一下算法。这些算法在计算机的数据处理上,确实起到了把效率提高几万,甚至几十几百万次的效果。
如果用二分查找法,可以进一步减少检测次数减少到23万次。
这里仍然假设10万人有一个感染,也就是10万个人里面找一个人出来。用二分法需要找约17次,那么总的检测次数就是:
group_size = 100000 #10万人一组 group_num = 1400000000 / 100000 # 共1400组 from math
import log #
用2分法每10万人只需要log(10w,2),大约16次检测 check_num = round(log(group_size, 2) * group_num)
print(f'检测数量:{check_num:,}')
计算结果:检测数量:232,535
虽然由于检测准确度的问题,二分法不能实施,但算法的世界真的很奥妙。大家都应该学点编程,学点算法。
下面是二分查找法的Python非递归实现:
#二分查找法,非递归实现 def binary_search(arr, x):
low = 0 high = len(arr) - 1 mid = 0
while low <= high:
mid = (high + low) // 2 if arr[mid] < x:
low = mid + 1
elif arr[mid] > x:
high = mid - 1 else:
return mid
return -1
arr = [ 2, 3, 4, 10, 40 ] x = 10 result = binary_search(arr, x)
下面是递归实现:
def binary_search(arr, low, high, x):
if high >= low:
mid = (high + low) // 2 if arr[mid] == x:
return mid
elif arr[mid] > x:
return binary_search(arr, low, mid - 1, x)
else:
return binary_search(arr, mid + 1, high, x)
else:
return -1
arr = [ 2, 3, 4, 10, 40 ]
x = 10 result = binary_search(arr, 0, len(arr)-1, x)
数据分析咨询请扫描二维码
在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16在当今数据驱动的世界中,数据分析师的角色越发重要。他们不仅承担着从复杂的数据集中抽取洞察的任务,还需要用技术和洞察力引导 ...
2024-12-16数据分析师的日常工作就像是在数据的海洋中寻找宝藏,而掌握函数的使用技巧,是让这一探索旅程更加高效和精准的关键。在分析这个 ...
2024-12-16