
来源:麦叔编程
作者:麦叔
到了过年的时候了,你要回老家过年吗?如果回老家过年,需要做核算检测。我也正在犹豫中。你们做了吗?
核酸检测本身是一个比较费时,费力,费钱的复杂过程,所以现在低风险地区都是采用的10人一组混合检验的。
具体来说就是将采集自10个人的10支拭子样本集合于1个采集管中进行核酸检测。
混检筛查中一旦发现阳性或弱阳性,将会立即进行追溯,通知相关部门对该混采管的10个受试者暂时单独隔离,
并重新采集单管拭子进行复核,再确定这10个人当中到底哪一个是阳性。
如果检测结果是阴性,意味着这10个样本全是阴性,混检的10个人都是安全的。
看到这个过程后,作为程序员的我禁不住拍了一下自己的大腿,这不就是个很简单算法嘛!
但是这个小小的算法把检验的成本降低了接近90%,把检验的速度提高了近10倍!算法真是太奇妙了!
顺着这个思路,有没有更好的算法,进一步加快这个过程呢?理论上来说,如果用二分法,
可以把14亿次检测减少到大概23万次左右。而现在10比1混合检验的次数大约是1.4亿次。
关于算法,本文下面再讨论。咱们先说一个大家关心的问题。
把10个人的样本混在一起,咋一听觉得很不靠谱,实际上还是很靠谱的。但是会不会出现检验不准的情况呢?确实存在一些潜在问题。
以下专业分析来自知乎,作者:返朴https://www.zhihu.com/question/404866690/answer/1326422005
假阴性率会增加,准确度下降。举两个假设的情况给大家解释为什么假阴性率会增加:
情况1:假设使用的是饱受争议的美国CDC的核酸RT-PCR检测试剂盒。这个试剂盒一共测三个新冠基因片段,
其中两个是新冠特异的基因片段,第三个是所有类似于SARS的冠状病毒都有的基因片段。
除此以外,还包括一个控制探针 (control probe)针对人的RNase P基因。这个探针的目的是用来保障取样足够和RNA提纯过程没有出错。
如果取样不够,或者RNA纯化出错导致RNA降解,探针就读不出数值,检测结果就是“无效(invalid)”,还需要重新再测。
如果有位阳性感染者,在鼻咽拭子取样的时候,样本量取得不够。如果对这个样本用美国CDC的核酸试剂盒进行单独的核酸检测,虽然新冠基因是阴性,RNase P控制探针的结果也是阴性,最终结果就显示“无效(invalid)”,还需要重新再测。
然而,如果把这个人的样本和其他4个人混合在一起,进行混合核酸测试——其他4位都是核酸阴性,且取到了足够的样本。这时,用美国CDC的核酸试剂盒去检测5个人的混合样本,测出新冠基因是阴性,RNase P的控制探针是阳性(表明样本取样提纯没有出错),因此得出结论:这5位都是核酸阴性。那位阳性感染者得到的就是一个“假阴性”结果。
情况2:不同核酸检测的设计不同,导致试剂盒的敏感度和特异性也不同。假设所用核酸试剂盒的敏感度是500个新冠RNA/毫升。有一位阳性感染者取样,提纯样本里面的RNA以后,用1µg总RNA量来做RT-PCR,里面包含了500个新冠RNA/毫升,那么检测结果是阳性。可是如果他的样本和其他4个人混在一起检测,还是用1µg总RNA量来做RT-PCR,假设是等量混合,那么他的RNA实际只占~20%。1µg总混合RNA里面大约只有100个新冠RNA/毫升。受试剂盒敏感度的限制,结果会是假阴性。
但这不是说混检就不能实行,而是有一定的限制:
(1)每个样本的采集量要足,否则会出现稀释后出现假阴性的问题
(2)只对低风险地区实行混检
下面用算法简单模拟采样数量和检测数量,其实也不是什么算法,就是两个数学公式:
total_pop = 1400000000 #总人口 rate = 0.00001 #感染率 group_size = 10
#每组人数 check_num = 0
caiyang_num = 0 #计算采用数量:总人数 + 要重复采样的数量 caiyang_num = total_pop
+ (total_pop * rate) *
group_size #计算检测次数:人数除以10 + 重复检测数 check_num = total_pop / group_size
+ (total_pop * rate) *
group_size print(f'采用数:{caiyang_num:,}, 检测数量:{check_num:,}')
运行结果:采用数:1,400,140,000.0, 检测数量:140,140,000.0
假设感染率为10万分之一的情况下,要采样14亿零14万次;要检测1亿4千万零14万次。
如果调整每100人一组检测:采用数:1,401,400,000.0, 检测数量:15,400,000.0
采用数增加了100多万次,而检测次数减少了1亿2千多万次。也就是说分组能极大的减少检测次数。
但是受制于准确度的影响,我们这里只是探讨一下算法。这些算法在计算机的数据处理上,确实起到了把效率提高几万,甚至几十几百万次的效果。
如果用二分查找法,可以进一步减少检测次数减少到23万次。
这里仍然假设10万人有一个感染,也就是10万个人里面找一个人出来。用二分法需要找约17次,那么总的检测次数就是:
group_size = 100000 #10万人一组 group_num = 1400000000 / 100000 # 共1400组 from math
import log #
用2分法每10万人只需要log(10w,2),大约16次检测 check_num = round(log(group_size, 2) * group_num)
print(f'检测数量:{check_num:,}')
计算结果:检测数量:232,535
虽然由于检测准确度的问题,二分法不能实施,但算法的世界真的很奥妙。大家都应该学点编程,学点算法。
下面是二分查找法的Python非递归实现:
#二分查找法,非递归实现 def binary_search(arr, x):
low = 0 high = len(arr) - 1 mid = 0
while low <= high:
mid = (high + low) // 2 if arr[mid] < x:
low = mid + 1
elif arr[mid] > x:
high = mid - 1 else:
return mid
return -1
arr = [ 2, 3, 4, 10, 40 ] x = 10 result = binary_search(arr, x)
下面是递归实现:
def binary_search(arr, low, high, x):
if high >= low:
mid = (high + low) // 2 if arr[mid] == x:
return mid
elif arr[mid] > x:
return binary_search(arr, low, mid - 1, x)
else:
return binary_search(arr, mid + 1, high, x)
else:
return -1
arr = [ 2, 3, 4, 10, 40 ]
x = 10 result = binary_search(arr, 0, len(arr)-1, x)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10