来源:麦叔编程
作者:麦叔
到了过年的时候了,你要回老家过年吗?如果回老家过年,需要做核算检测。我也正在犹豫中。你们做了吗?
核酸检测本身是一个比较费时,费力,费钱的复杂过程,所以现在低风险地区都是采用的10人一组混合检验的。
具体来说就是将采集自10个人的10支拭子样本集合于1个采集管中进行核酸检测。
混检筛查中一旦发现阳性或弱阳性,将会立即进行追溯,通知相关部门对该混采管的10个受试者暂时单独隔离,
并重新采集单管拭子进行复核,再确定这10个人当中到底哪一个是阳性。
如果检测结果是阴性,意味着这10个样本全是阴性,混检的10个人都是安全的。
看到这个过程后,作为程序员的我禁不住拍了一下自己的大腿,这不就是个很简单算法嘛!
但是这个小小的算法把检验的成本降低了接近90%,把检验的速度提高了近10倍!算法真是太奇妙了!
顺着这个思路,有没有更好的算法,进一步加快这个过程呢?理论上来说,如果用二分法,
可以把14亿次检测减少到大概23万次左右。而现在10比1混合检验的次数大约是1.4亿次。
关于算法,本文下面再讨论。咱们先说一个大家关心的问题。
把10个人的样本混在一起,咋一听觉得很不靠谱,实际上还是很靠谱的。但是会不会出现检验不准的情况呢?确实存在一些潜在问题。
以下专业分析来自知乎,作者:返朴https://www.zhihu.com/question/404866690/answer/1326422005
假阴性率会增加,准确度下降。举两个假设的情况给大家解释为什么假阴性率会增加:
情况1:假设使用的是饱受争议的美国CDC的核酸RT-PCR检测试剂盒。这个试剂盒一共测三个新冠基因片段,
其中两个是新冠特异的基因片段,第三个是所有类似于SARS的冠状病毒都有的基因片段。
除此以外,还包括一个控制探针 (control probe)针对人的RNase P基因。这个探针的目的是用来保障取样足够和RNA提纯过程没有出错。
如果取样不够,或者RNA纯化出错导致RNA降解,探针就读不出数值,检测结果就是“无效(invalid)”,还需要重新再测。
如果有位阳性感染者,在鼻咽拭子取样的时候,样本量取得不够。如果对这个样本用美国CDC的核酸试剂盒进行单独的核酸检测,虽然新冠基因是阴性,RNase P控制探针的结果也是阴性,最终结果就显示“无效(invalid)”,还需要重新再测。
然而,如果把这个人的样本和其他4个人混合在一起,进行混合核酸测试——其他4位都是核酸阴性,且取到了足够的样本。这时,用美国CDC的核酸试剂盒去检测5个人的混合样本,测出新冠基因是阴性,RNase P的控制探针是阳性(表明样本取样提纯没有出错),因此得出结论:这5位都是核酸阴性。那位阳性感染者得到的就是一个“假阴性”结果。
情况2:不同核酸检测的设计不同,导致试剂盒的敏感度和特异性也不同。假设所用核酸试剂盒的敏感度是500个新冠RNA/毫升。有一位阳性感染者取样,提纯样本里面的RNA以后,用1µg总RNA量来做RT-PCR,里面包含了500个新冠RNA/毫升,那么检测结果是阳性。可是如果他的样本和其他4个人混在一起检测,还是用1µg总RNA量来做RT-PCR,假设是等量混合,那么他的RNA实际只占~20%。1µg总混合RNA里面大约只有100个新冠RNA/毫升。受试剂盒敏感度的限制,结果会是假阴性。
但这不是说混检就不能实行,而是有一定的限制:
(1)每个样本的采集量要足,否则会出现稀释后出现假阴性的问题
(2)只对低风险地区实行混检
下面用算法简单模拟采样数量和检测数量,其实也不是什么算法,就是两个数学公式:
total_pop = 1400000000 #总人口 rate = 0.00001 #感染率 group_size = 10
#每组人数 check_num = 0
caiyang_num = 0 #计算采用数量:总人数 + 要重复采样的数量 caiyang_num = total_pop
+ (total_pop * rate) *
group_size #计算检测次数:人数除以10 + 重复检测数 check_num = total_pop / group_size
+ (total_pop * rate) *
group_size print(f'采用数:{caiyang_num:,}, 检测数量:{check_num:,}')
运行结果:采用数:1,400,140,000.0, 检测数量:140,140,000.0
假设感染率为10万分之一的情况下,要采样14亿零14万次;要检测1亿4千万零14万次。
如果调整每100人一组检测:采用数:1,401,400,000.0, 检测数量:15,400,000.0
采用数增加了100多万次,而检测次数减少了1亿2千多万次。也就是说分组能极大的减少检测次数。
但是受制于准确度的影响,我们这里只是探讨一下算法。这些算法在计算机的数据处理上,确实起到了把效率提高几万,甚至几十几百万次的效果。
如果用二分查找法,可以进一步减少检测次数减少到23万次。
这里仍然假设10万人有一个感染,也就是10万个人里面找一个人出来。用二分法需要找约17次,那么总的检测次数就是:
group_size = 100000 #10万人一组 group_num = 1400000000 / 100000 # 共1400组 from math
import log #
用2分法每10万人只需要log(10w,2),大约16次检测 check_num = round(log(group_size, 2) * group_num)
print(f'检测数量:{check_num:,}')
计算结果:检测数量:232,535
虽然由于检测准确度的问题,二分法不能实施,但算法的世界真的很奥妙。大家都应该学点编程,学点算法。
下面是二分查找法的Python非递归实现:
#二分查找法,非递归实现 def binary_search(arr, x):
low = 0 high = len(arr) - 1 mid = 0
while low <= high:
mid = (high + low) // 2 if arr[mid] < x:
low = mid + 1
elif arr[mid] > x:
high = mid - 1 else:
return mid
return -1
arr = [ 2, 3, 4, 10, 40 ] x = 10 result = binary_search(arr, x)
下面是递归实现:
def binary_search(arr, low, high, x):
if high >= low:
mid = (high + low) // 2 if arr[mid] == x:
return mid
elif arr[mid] > x:
return binary_search(arr, low, mid - 1, x)
else:
return binary_search(arr, mid + 1, high, x)
else:
return -1
arr = [ 2, 3, 4, 10, 40 ]
x = 10 result = binary_search(arr, 0, len(arr)-1, x)
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10