京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:麦叔编程
作者:麦叔
今天分享13个Python代码技巧。
来,数一数你知道几个。最后大家比一比!
1,2,3,开始!
作为程序员,一定离不开两个字:性能。
工作中经常要去解决性能的问题:
用time模块可以计算代码执行时间:
import time startTime = time.time()
# 要衡量的代码 for i in range(1000000):
print('麦叔:大家早上好!')
endTime = time.time()
totalTime = endTime - startTime print("总时间= ", totalTime)
你会吗?如果会,给自己加1分!
假设有两个列表,你想获取列表中的不同元素。
可以使用set的symmetric_difference方法:
list1 = ['张三', '李四', '王五', '大美', '如花'] list2 = ['张三', '李四', '王五', '麦叔'] set1 = set(list1) set2 = set(list2) list3 = list(set1.symmetric_difference(set2)) print(list3) #打印:['大美', '如花', '麦叔']
你会吗?如果会,给自己加1分!
在程序的世界里,内存是绝对的稀缺资源。程序员绞尽脑汁的想办法提升内存使用效率,有的为此头发都秃了。
所以了解某些对象所使用的内存数量是常用操作。使用sys.getsizeof可以获得对象所占用的字节数:
import sys
list1 = ['张三', '李四', '王五', '大美', '如花'] print("list1所用字节数 = ",sys.getsizeof(list1))
name = '麦叔' print("name的字节数 = ",sys.getsizeof(name))
注意:对于list等容器类对象,打印出的字节数只是容器本身占用的内存数,不包括它存放的内容所占用的内存。
了解Python的内存管理,请看我另一篇文章:
Python是如何管理内存的?
你会吗?如果会,给自己加1分!
第一个列表中存放了所有的迟到记录,里面有重复的名字。你上学迟到过吗?
我们要做的是去掉重复,获得一份没有重复的迟到人名单。
最简单的方法就是把list转成set,因为set是不允许重复的。
late_names = ['张三', '李四', '王五', '大美', '如花', '张三', '李四', '林志颖',
'大美'] print("迟到记录= ", late_names)
unqiue_late_names = list(set(late_names)) print("迟到过的人= ", unqiue_late_names)
你会吗?如果会,给自己加1分!
可以判断第一个元素的个数是否和列表的长度相同:
list1 = [20, 20, 20, 20] print("list1中都相同吗?", list1.count(list1[0]) == len(list1))
list2 = [20, 20, 20, 50] print("list2中都相同吗?", list2.count(list2[0]) == len(list2))
你会吗?如果会,给自己加1分!
有两个列表,里面内容相同,但顺序不同。
我们想确定一下它们是否完全相同。
有两个办法:
from collections import Counter one = [33, 22, 11, 44, 55] two = [22, 11, 44, 55, 33]
print("相同吗?", Counter(one) == Counter(two)) print("相同吗?", sorted(one) == sorted(two))
你会吗?如果会,给自己加1分!
由于set不能重复的特性,经常在判断唯一或者去重的时候使用。
下面的isUnque方法,通过推导式生成一个由None或True组成的序列。如果里面有True就说明重复:
def isUnique(item): tempSet = set()
return not any(i in tempSet or tempSet.add(i) for i in item)
list1 = [123, 345, 456, 23, 567]
print("list1都唯一吗? ", isUnique(list1))
list2 = [123, 345, 567, 23, 567]
print("list2都唯一吗? ", isUnique(list2))
你会吗?如果会,给自己加1分!
有时候从网上接收到的数据是字节码,比如这样的:xe9xbaxa6xe5x8fx94
我们需要把字节码转成字符串,否则就是乱码。
在转码的过程中也要使用正确的编码规则,否则还是乱码。
byteVar = bytes("麦叔密码", 'utf-8') print(byteVar) #编码规则不对,乱码:楹﹀彅瀵嗙爜
str1 = str(byteVar.decode("gbk")) print("字符串是:" , str1 ) #编码规则正确,
不乱 str2 = str(byteVar.decode("utf-8")) print("字符串是:" , str2 )
你会吗?如果会,给自己加1分!
循环的时候经常要打印序号,使用enumerate::
listOne = [123, 345, 456, 23] for index, element in enumerate(listOne): print(index, element)
你会吗?如果会,给自己加1分!
使用**给字典先解包,再把它们合并起来。合并的过程中,如果后面的key和前面一样会覆盖前面的value。
names1 = {1: '张三', 2: "李四", 3:"王五"}
names2 = {2: '麦叔', 4: "小强"}
all_names = {**names1, **names2} print(all_names)
你会吗?如果会,给自己加1分!
使用zip先把两个列表合成由元组组成的列表,然后再转成字典:
ids = [1, 2, 3, 4, 5] names = ['张三', '李四', '王五', '大美', '如花'] name_dict = dict(zip(ids, names)) print(name_dict)
你会吗?如果会,给自己加1分!
浮点数的计算可能会产生很多位小数,假设我们要求只显示2位小数:
number= 88.234578965467 print('{0:.2f}'.format(number))
你会吗?如果会,给自己加1分!
Python函数可以返回多个值,用逗号隔开。
实际上是返回了一个元组,但Python会自动解包,所以调用者可以直接使用返回值:
def total_diff(num1, num2): total = num1 + num2
diff = num1 - num2
return total, diff
total, diff = total_diff(99, 88)
print("总和:", total, "差额:", diff)
这13个小技巧,你会几个呢?别的小伙伴会几个呢?投票查看:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23