1.线性回归的出现
当被解释变量和解释变量都为连续型,且存在线性关系时,可以采用线性回归对被解释变量进行预测。
多元线性回归的出现是非常自然的,由于在一元线性回归中,因变量只能依赖一个自变量来解释,换一句话说,就是我们 只能在一维空间中来解释世界,这是十分糟糕的,毕竟事物之间的关联是非常复杂的,只用其中一个变量来解释,总是显 得那么苍白和无力。
下面我们就来以“房价”和“客户价值”为因变量,探索一下影响他们的自变量。首先,影响房价的因素有哪些呢?
因此,我们不难发现,在用更多变量来解释因变量,显然会更加全面、丰富、合理和科学。与一元线性回归类似,一个含
有k个自变量的多元线性回归模型可以表示为:
y= Bo+Bixl+B2x2++bx+8
,β,B1,B,,为模型参数,E为误差项,来解释不能被自变量线性关系解释的部分。
多元线性回归的基本假设
1.线性关系假设——线性关系检验
2.线性关系检验——回归系数检验
3.期望为0的假设
(1)假设检验方法:(图形法)可以直接绘制散点图,查看残差是否对称分布在0的两侧;(统计检验)可以用假设检验 中的t检验方法,其原假设为H0:E=0,具体操作将在案例中展示。
(2)假设失效的影响:如果残差的期望不等于0,而等于其他的某个常数,那么这个常数就应该出现在多元线性回归的常 数项内。
(3)假设失效解决方法:如果失效,考虑是否强制将常数项设置为,或考虑异常值问题。
4.同方差假设
假设检验方法:(图形法)对残差以及因变量的拟合值作图。
如果没有异方差,那么残差和因变量拟合值构成的散点应该是完全 随机的,其趋势线应该是几乎是水平的。上图中间的趋势线存在弯 曲,即存在一定的异方差。
除了作图,我们也可以选择Breusch-Pagan检验,注意该检验的原假设是同方差,备择假设是异方差,这 样读者根据输出的P值就可以直观判断了。
假设失效的影响:如果误差是异方差的,那么OLS估计的标准误差将不可靠。
假设失效解决方法:克服异方差性的影响,我们可以尝试对因变量做一些非线性变换,如等等。
5.正态性假设
假设检验方法:(图形法)做QQ图。
QQ图的解读十分简单,如果散点在直线上或者直线附近,那么我 们就可以认为数据是正态分布的,否则就任务不是正态分布。 对于正态分布的统计检验,我们可以选择KS检验(Kolmogorov– Smirnov test),其原假设:数据是正态分布的。这样读者可以直 接根据输出的P值来对检验结果进行分析。
假设失效的影响:如果误差项不是正态分布的,则OLS估计的标准误差将不可靠。然而对于正态性假设对于线性回归的 重要性,目前各方还有一些有价值的观点。
假设失效解决方法:关注样本中两端的异常值是否合理,如异常值不合理,可以考虑删除异常值。也可以尝试对变量做 非线性变换。
6.横截面和时间序列数据在回归建模上的差异
横截面是指在同一时间平面上的数据,例如2013年各个上市公司的财报数据,如果研究其不同变量之间的线性关系,可 以用多元线性回归模型。但是如果数据包含时间趋势,例如2001-2018年全国各个省市的宏观经济指标数据,如果要研 究不同宏观指标之间的线性影响,就要用面板回归模型了(计量模型的一种)。
1.多元线性回归的参数估计
1. 工人月工资(元)依劳动生产率(千元)变化的回归直线方程为y=60+90x,下列判断正确的是( )?
A. 劳动生产率为1000元时,工资为50元
B. 劳动生产率提高1000元时,工资提高150元
C. 劳动生产率提高1000元时,工资提高90元
D. 劳动生产率为1000元时,工资为90元
答案:C 解析:根据回归直线方程 y=60+90x 得到,劳动生产率为1千元时,工人月工资=60+90*1=150元,劳动生产率提高1千元 时,工资提高90元。
2. 以下哪个假设不是线性回归分析的前提假设? A. 解释变量之间必须严格独立
B. 解释变量之间不能强线性相关
C. 扰动项独立同分布
D. 扰动项服从正态分布
答案:A 解析:回归分析的前提假设中,包含解释变量之间非线性相关、扰动项独立同分布,扰动项服从正态分布。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20