京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1.市场调研的基本步骤
市场调研是一种非常常用的信息获取渠道。调研的结果可以整理成分析项目的输入,甚至可以作为决策的依据。因此想 要做好市场调研,科学的流程是非常必要的。一般我们会通过提出问题、调查收集资料和分析预测问题三个步骤来进行。
第一步:提出问题
通常我们在面对一些重大决策,或者探索类的项目,特别是营销项目时,我们会启动市场调研。这个时候,我们可能提出的一些问题包括:
(1) 目前企业的现状是什么样子?
(2)市场现状是什么样子?
(3)消费者的需求是如何分布的?
(4)当前的客服环节存在什么问题?
(5)…………
当然,提出这些问题之后,大家需要注意一点。并不是所有的问题都是适合进行市场调研的。所以我们在提出了问题之后,需要结合问题 来思考以下两点:
第一,收集资料的范围是什么。进一步地说,我们的成本和时间是否允许。
第二,项目的研究要求。我们希望达到什么样的最终产出。 只有回答了这两个问题,我们才能够更好地确定问题,也才能从开始的阶段就保证市场调研的有效性。
第二步:调查收集资料
在确认了问题和调研目标之后,我们就要根据收集资料的范围来进行资料的搜集。一般传统的市场调研,主要通过线下问卷和访谈的形式 来进行收集。在收集资料的过程中,我们要:
(1)确定参与调研的人员和各自的参与形式;
(2)选择调研群体;
(3)分配时间和经费;
(4)制订具体的调研计划;
(5)展开调研。
对于调研收集的数据,为了保证准确和有效性,也需要进行一定的逻辑验证和清洗。在互联网时代,市场调研的方式变得更加多样化。问 卷可以采用线上触达的方式,这种方式不光可以降低成本,还可以做到更精准地投放到调研群体。另外,对于一些访谈的录音和文本,也 可以采用机器学习的方式进行自动化处理。
第三步:分析预测问题
在收集到足够的资料后,我们就要对这些信息进行分析,并用来帮助预测和决策。常见的市场调研分析方法,与统计学的方法也比较 类似。我们可以先对收集后的资料进行分类,区分数据和非数据信息。
对于数据信息,我们可以通过描述性统计、主成分分析、因子分析、回归分析、时间序列、逻辑回归、对应分析、多维尺度分析等方 法进行。
而对于非数据的信息,我们可以采用人工整理的方式,也可以通过自然语言处理NLP(Nature Language Processing)的技术进行 高效解读。
1.单选题
是市场调研问卷中最简单、易回答的问题,也是我们最容易进行录入和分析的问题。在设计单选题的时候,我们需要注意选项间的关系, 尽量做到不重不漏,避免答题者产生混淆和困扰。对于单选题的答案,我们可以用数字来进行表示。但是需要特别注意的是,这些数字 本身并不具备大小含义,只应该作为名义测量进行处理。 2.多项选择题
相比单选题而言,会复杂一些。可以是限定个数的多选题,也可以是由答题者自己决定数量的多选题。由于现在的研究趋势,通常是把 选项用数字化代替进行录入,因此在设计多项选择题的时候,应当更加谨慎。尽可能地用单选题替代。
在必须使用多项选择题的时候,选项的罗列要有一定的逻辑关系,避免无意义地增加选项,给后续的录入和分析造成麻烦。
对于收集回来的数据,我们需要进行编码和录入。编码录入,一般指的是,根据字段含义确定合适的数据类型,进行简化替代和录入的 过程。
通常,数据的编码类型有数值变量、字符变量、二分变量和分类变量。
开放式问题,我们在录入过程中都会根据答案内容来判断是作为字符变量还是数值变量进行录入。
比如年龄,可以直接作为数值变量, 而城市,则需要作为字符变量进行录入。 选择题,虽然选项可能对应的是一个具体的词语,但是我们仍然可以表示成数字的形式,方便录入和分析。而每个数字和选项词语的对 应关系,可以作为数据词典,单独保存,以备查证和分析过程中的解读。
录入的变量,如果只有两种取值的可能,我们可以叫做二分变量。而如果有多重取值的可能,我们可以叫做分类变量。字符变量,可以 根据具体情况转换为二分变量或者分类变量。比如取值为是或者否的字符变量,可以转换为二分变量。而取值为城市名称的字符变量, 也可以酌情转换为分类变量。但是如果字符变量的取值范围是不确定、开放式的,那么就不能进行转化和简化。所以编码通常应用于封 闭性问题,也就是答案范围确定的问题。
对于单选题,我们可以直接作为分类变量处理。而多选题,我们可以根据情况记录为分类变量,也可以把每个选项作为一个字段,存储为二分变量。
1.以问题 “平均每次通话时间(分)”,从方便数据处理的角度,下列方法最适宜的是?
A.需要编码为数值变量
B.需要编码为字符变量
C.需要编码为二分变量
D.需要编码为分类变量
答案:A 解析:平均每次通话时间是个连续变量,为方便后续处理,编码为数值型是最适宜的。
2.市场调查报告要发挥其应有的作用,除了必须说明一切必要的细节、能发挥参考作用外,还必须( )。
A. 能够证明调查研究结果的可信性
B. 详细说明调查的具体过程
C. 详细论证调查方法的科学性
D. 能够证明调查结论的可行性
答案:A 解析:信息的有效性是保证后期统计分析的重要前提。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03