
1.市场调研的基本步骤
市场调研是一种非常常用的信息获取渠道。调研的结果可以整理成分析项目的输入,甚至可以作为决策的依据。因此想 要做好市场调研,科学的流程是非常必要的。一般我们会通过提出问题、调查收集资料和分析预测问题三个步骤来进行。
第一步:提出问题
通常我们在面对一些重大决策,或者探索类的项目,特别是营销项目时,我们会启动市场调研。这个时候,我们可能提出的一些问题包括:
(1) 目前企业的现状是什么样子?
(2)市场现状是什么样子?
(3)消费者的需求是如何分布的?
(4)当前的客服环节存在什么问题?
(5)…………
当然,提出这些问题之后,大家需要注意一点。并不是所有的问题都是适合进行市场调研的。所以我们在提出了问题之后,需要结合问题 来思考以下两点:
第一,收集资料的范围是什么。进一步地说,我们的成本和时间是否允许。
第二,项目的研究要求。我们希望达到什么样的最终产出。 只有回答了这两个问题,我们才能够更好地确定问题,也才能从开始的阶段就保证市场调研的有效性。
第二步:调查收集资料
在确认了问题和调研目标之后,我们就要根据收集资料的范围来进行资料的搜集。一般传统的市场调研,主要通过线下问卷和访谈的形式 来进行收集。在收集资料的过程中,我们要:
(1)确定参与调研的人员和各自的参与形式;
(2)选择调研群体;
(3)分配时间和经费;
(4)制订具体的调研计划;
(5)展开调研。
对于调研收集的数据,为了保证准确和有效性,也需要进行一定的逻辑验证和清洗。在互联网时代,市场调研的方式变得更加多样化。问 卷可以采用线上触达的方式,这种方式不光可以降低成本,还可以做到更精准地投放到调研群体。另外,对于一些访谈的录音和文本,也 可以采用机器学习的方式进行自动化处理。
第三步:分析预测问题
在收集到足够的资料后,我们就要对这些信息进行分析,并用来帮助预测和决策。常见的市场调研分析方法,与统计学的方法也比较 类似。我们可以先对收集后的资料进行分类,区分数据和非数据信息。
对于数据信息,我们可以通过描述性统计、主成分分析、因子分析、回归分析、时间序列、逻辑回归、对应分析、多维尺度分析等方 法进行。
而对于非数据的信息,我们可以采用人工整理的方式,也可以通过自然语言处理NLP(Nature Language Processing)的技术进行 高效解读。
1.单选题
是市场调研问卷中最简单、易回答的问题,也是我们最容易进行录入和分析的问题。在设计单选题的时候,我们需要注意选项间的关系, 尽量做到不重不漏,避免答题者产生混淆和困扰。对于单选题的答案,我们可以用数字来进行表示。但是需要特别注意的是,这些数字 本身并不具备大小含义,只应该作为名义测量进行处理。 2.多项选择题
相比单选题而言,会复杂一些。可以是限定个数的多选题,也可以是由答题者自己决定数量的多选题。由于现在的研究趋势,通常是把 选项用数字化代替进行录入,因此在设计多项选择题的时候,应当更加谨慎。尽可能地用单选题替代。
在必须使用多项选择题的时候,选项的罗列要有一定的逻辑关系,避免无意义地增加选项,给后续的录入和分析造成麻烦。
对于收集回来的数据,我们需要进行编码和录入。编码录入,一般指的是,根据字段含义确定合适的数据类型,进行简化替代和录入的 过程。
通常,数据的编码类型有数值变量、字符变量、二分变量和分类变量。
开放式问题,我们在录入过程中都会根据答案内容来判断是作为字符变量还是数值变量进行录入。
比如年龄,可以直接作为数值变量, 而城市,则需要作为字符变量进行录入。 选择题,虽然选项可能对应的是一个具体的词语,但是我们仍然可以表示成数字的形式,方便录入和分析。而每个数字和选项词语的对 应关系,可以作为数据词典,单独保存,以备查证和分析过程中的解读。
录入的变量,如果只有两种取值的可能,我们可以叫做二分变量。而如果有多重取值的可能,我们可以叫做分类变量。字符变量,可以 根据具体情况转换为二分变量或者分类变量。比如取值为是或者否的字符变量,可以转换为二分变量。而取值为城市名称的字符变量, 也可以酌情转换为分类变量。但是如果字符变量的取值范围是不确定、开放式的,那么就不能进行转化和简化。所以编码通常应用于封 闭性问题,也就是答案范围确定的问题。
对于单选题,我们可以直接作为分类变量处理。而多选题,我们可以根据情况记录为分类变量,也可以把每个选项作为一个字段,存储为二分变量。
1.以问题 “平均每次通话时间(分)”,从方便数据处理的角度,下列方法最适宜的是?
A.需要编码为数值变量
B.需要编码为字符变量
C.需要编码为二分变量
D.需要编码为分类变量
答案:A 解析:平均每次通话时间是个连续变量,为方便后续处理,编码为数值型是最适宜的。
2.市场调查报告要发挥其应有的作用,除了必须说明一切必要的细节、能发挥参考作用外,还必须( )。
A. 能够证明调查研究结果的可信性
B. 详细说明调查的具体过程
C. 详细论证调查方法的科学性
D. 能够证明调查结论的可行性
答案:A 解析:信息的有效性是保证后期统计分析的重要前提。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05