SPSS科普 | 统计描述
统计描述的目的就是了解数据的基本特征和分布规律,为进一步合理地选择统计方法提供依据。常用的有Frequencies、Descriptives
和Explore过程。
一、Frequencies过程
该过程用于产生数据的频数表,输出描述集中位置、离散趋势及分布形状等的指标,并能给出百分位数、绘制频数图等。
操作步骤:依次点击分析---描述统计---频率(图1),激活Frequencies对话框(图2)。将需要进行统计描述的变量从左侧变量框选至右侧变量框(以身高为例),点击“统计量”按钮,弹出图3对话框,根据需要勾选,通常选择“均值、标准差、最小值、最大值、偏度、峰度”,点击“继续”回到Frequencies对话框,点击“图表”,弹出图4对话框,选择“直方图”,并勾选“在直方图上显示正态曲线”,点击“继续”回到Frequencies对话框,点击“确定”按钮,即输出统计结果图5、6、7。
图1 激活Frequencies对话框
图2 Frequencies对话框
图3 统计量对话框
图4 图表对话框
结果解释:图5给出了样本量、均数、标准差、最大值、最小值和峰度等;图6为频数表,图7为相应的直方图,由于结果简单,易于理解,不再赘述。
图5 统计量
图6 频数表
图7 直方图
二、Descriptives过程
该过程对数值变量进行一般性的描述。其对话框与Frequencies类似。
操作步骤:依次点击分析---描述统计---描述(图8),激活Descriptives对话框(图9)。将需要进行统计描述的变量从左侧变量框选至右侧变量框(以年龄为例)。点击“选项”按钮,弹出图10对话框,根据需要勾选,通常选择“均值、标准差、最小值、最大值”,点击“继续”回到Descriptives对话框,点击“确定”按钮,即输出统计结果图11。因结果简单,不再解释。
图8 激活Descriptives对话框
图9 Descriptives对话框
图10选项对话框
图11 Descriptives结果
三、Explore过程
该过程使用描述性统计量和图形对变量进行探索性分析,还可以按照某个变量分组后描述其他变量的属性,可以快速获取资料的基本信息,为下一步选择统计分析方法提供依据。
操作步骤:依次点击“分析---描述统计---探索”激活Explore对话框(图12)。将需要描述的变量选至右侧因变量列表(以SAS得分为例),将分组变量选至因子列表(以性别分组),将编号选至标注个案。点击“统计量”按钮,弹出图13对话框,勾选“描述性、界外值、百分位数”,点击“继续”回到Explore对话框,点击“绘制”,弹出图14对话框,选择“按因子水平分组”、“直方图”、“带检验的正态图”,点击“继续”回到Explore对话框,点击“确定”按钮,即输出统计结果图11。
结果解释:SPSS首先给出按照性别分组情况(男、女各自样本量及所占比例)、描述性统计量、百分位数以及5个最大和最小值,因结果简单易懂,故不再截图展示;还显示正态检验的结果图15,红圈所示P>0.05说明服从正态分布,如果P<0.05,说明不服从正态分布;另外还有直方图、正态Q-Q图均显示正态分布情况,篇幅限制,不再截图。
图12 Explore对话框
图13统计量对话框
图14绘图对话框
图15 正态性检验结果
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21