来源:麦叔编程
作者:麦叔
本文帮你快速掌握数据分析师必须会用的两个工具 - ipython和jupyter notebook。
既然有了Python,为什么还要ipython?麦叔不用说话,给你一张图你就明白啦。jupyter notebook又是什么鬼?
建议把本文放到收藏夹。吃灰也好过需要的时候找不到。
iPython是Interactive Python,它是基于Python的一个包装。它其实就是一个可以通过pip安装的包。提供了普通python之外的一些功能,其中一个功能就是可以显示图片。
iPython在数据分析师,数据科学家,人工智能科学中经常使用。
(1)安装
python -m pip install ipython
(2)使用
ipython就是Python,使用方法和使用普通的交互式Python一样,代码也一样。只不过输出显示上有一定优化。
zjueman@maishu data_analysis % ipython Python 3.8.1 (v3.8.1:1b293b6006, Dec 18 2019,
14:08:53) Type 'copyright', 'credits' or 'license' for more information IPython
7.21.0 -- An enhanced Interactive Python. Type '?' for help. In [1]:
2.使用ipython:为了运行一下代码,请先安装numpy:
python -m pip install numpy
In [1]: a = 5 In [2]: b = "麦叔" In [3]: import numpy as np In [4]:
data = {i:np.random.randn() for i in range(7)} In [5]: data Out[5]: {0: 0.8738401705018338,
1: 0.7173530856483666, 2: 1.269301701227684, 3: -0.6322949353286054, 4: -2.3619895093818295,
5: -0.9031446928993554, 6: -0.07942775508126601}
3.问号寻求帮助:
In [4]: name = 'maishu' In [5]: name?
Type: str
String form: maishu
Length: 6 Docstring:
str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.__str__() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
4.退出
In [10]: quit() zjueman@maishu data_analysis %
5.画图 为了运行一下代码需要先安装matplotlib
python -m pip install matplotlib
In [1]: import numpy as np In [2]: %matplotlib Using matplotlib backend: MacOSX In [3]: import matplotlib.pyplot as plt In [4]: plt.plot(np.random.randn(50).cumsum()) Out[4]: [<matplotlib.lines.line2d at 0x7fa7e7f8ce20>]matplotlib.lines.line2d at 0x7fa7e7f8ce20>
数据科学家们觉得ipython还不够过瘾,又在ipython基础上开发了jupyter notebook:一个基于网页的写代码界面。
jupyter是基于ipython的,很多操作几乎都一样。但是它有很多独特优点:
(1)文件可以保存为ipynb的文件
(2)在线编写代码
(3)支持多人协作
(4)支持markdown格式的文档
1. 安装
python -m pip install jupyter
2. 启动
> jupyter notebook
这个命令会在本机的8888端口上运行一个网站,并自动打开浏览器:
http://localhost:8888/tree
3. 基本使用
(1)创建文件
(2)编写和运行代码
(3)保存和修改文件名
4. Tab补全
在notebook中打代码的过程中,按Tab键可以自动提示和补全,类似于Pycharm和VSCode等IDE的功能:
它可支持:
(1)自动补全变量名
(2)自动补全函数名
(3)自动补全文件名等
5. 集成matplotlib画图
6. 魔术命令
(1)运行脚本:%run
(2)打印命令输入历史:%hist
(3)运行效率:%timeit
(4)其他魔术命令
(1)停止执行:Ctrl+C
(2)其他ipython快捷键
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31