京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:多因素方差分析
下面介绍多因素方差分析。单因素方差分析和多因素方差分析都是针对一个因变量的方差分析方法,单因素方差分析是通过分析单个因素(自变量)的不同水平对应因变量的数据变化来判断该因素是否对因变量有影响;多因素方差分析则包含两个以上的因素(自变量),不仅需要考虑每个因素单独对因变量的影响,还需要考虑因素之间交互作用以后对因变量的影响。下面两个表格是单因素方差分析和两因素方差分析的数据整理表格。
多因素方差分析原理
我们以两因素方差分析为例,介绍多因素方差分析原理。 假设因变量可能受两个因素(自变量)A和B的影响,其中因素A有p个水平,因素B有q个水平,则两个因素的交叉将因变量数据分成了P×Q个水平,如下图所示。
分析A和B两个因素对于因变量的影响,仍然是从因变量的样本方差开始,样本的总方差SST可以分解为:
SSA代表因素A引起的因变量数据变化的方差;SSB代表因素B引起的方差;SSAB表示因素A和因素B交互作用引起的方差;SSE代表随机误差。假如因素A的水平发生变化,比如从水平1变化到水平2,无论因素B取那个水平,因变量观测值都要同时增加或同时减小,则表示因素A的变化就可以决定观测值的变化,此时称A和B没有交互作用;如果因素A从水平1变化到水平2,因变量观测值在B的不同水平上变化方向不同,在有些水平上增加,有些水平上减小,也就是需要A和B交叉的水平才能确定因变量的变化,此时称因素A和B存在交互作用。
分析步骤
1、提出成对假设;原假设是多因素方差分析原假设为各因素的各个水平下,因变量的均值没有显著性差异;备择假设是各因素的各个水平下,因变量的均值不完全相同。
2、构造F统计量;构造3个不同的F统计量:
3、计算F值及p值,做出判断;SPSS会自动计算各统计量观测值和对应的概率p值,并以表格方式输出。根据P值,进行统计检验。如果P值大于显著水平,则不能拒绝原假设,认为因素水平上没有显著差异;如果P值小于显著水平,则拒绝原假设,认为有显著差异。
案例分析
2016年的考研人数创造了历史新高,其中一个重要原因是人们普遍认为学历与薪资收入成正比。现有一份社会调查数据,采集了470名公司员工的学历、工资和工作年限等7项信息。用多因素方差分析方法分析性别和学历对他们的薪资是否有显著影响。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
分析步骤
1、选择【分析】-【一般线性模型】-【单变量】,如下图所示,在跳出对话框中将工资选入因变量框,将学历和性别选入固定因子框。
2、概要图设置;点击绘图按钮,将学历选为水平轴,性别选入单图,点击添加。
3、点击【选项】按钮,按下图所示操作,其它保持系统默认设置,点击输出结果。
结果分析
1、主体间因子列表。
主体因子列表显示共有教育年限和性别两个因子,分别包含三个水平和两个水平,数字表示因子各水平对应的样本个案数。
2、方差齐性检验结果;
方差齐性检验结果显著性p等于0.000,小于0.05,说明方差齐性检验未通过,因此事后多重比较表也不具参考价值。
3、主体间效应检验表
修正的模型对应的p值为0.000,小于0.05,达到显著水平,说明学历和性别两个因素中至少有一个对当前工资的影响是显著的;学历的主效应F值为.226.372,P=0.000,达到非常显著的水平,说明学历对当前工资影响很大;性别对应的p值为0.022,小于0.05,说明性别对当前工资的影响也是显著的;学历*性别的交互效应p值为0.111,大于显著水平0.05,说明学历和性别交互作用后对当前工资的影响不显著。
4、概要图
由图可知,当前工资的均值在男女性别的两个水平上都随着教育年限的增加呈上升趋势。两条线有交叉,说明教育年限和性别有交互效应,但是从主体间效应检验表可知,交互效应没有达到显著性程度。
综合结论:数据分析结果显示学历对工资收入有显著性影响,这也证明考研人数屡创新高有其合理性存在。性别对收入也有显著影响,只是影响程度不及学历因素,说明社会发展到现在,职场对女性的歧视正在逐步降低,但是并未完全消失,仍需社会各方的努力。性别与学历交互后对工资收入没有显著影响,说明两者之间不存在明显的交互作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23