 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		SPSS分析技术:多因素方差分析
下面介绍多因素方差分析。单因素方差分析和多因素方差分析都是针对一个因变量的方差分析方法,单因素方差分析是通过分析单个因素(自变量)的不同水平对应因变量的数据变化来判断该因素是否对因变量有影响;多因素方差分析则包含两个以上的因素(自变量),不仅需要考虑每个因素单独对因变量的影响,还需要考虑因素之间交互作用以后对因变量的影响。下面两个表格是单因素方差分析和两因素方差分析的数据整理表格。
	 
多因素方差分析原理
我们以两因素方差分析为例,介绍多因素方差分析原理。 假设因变量可能受两个因素(自变量)A和B的影响,其中因素A有p个水平,因素B有q个水平,则两个因素的交叉将因变量数据分成了P×Q个水平,如下图所示。
	 
分析A和B两个因素对于因变量的影响,仍然是从因变量的样本方差开始,样本的总方差SST可以分解为:
	 
SSA代表因素A引起的因变量数据变化的方差;SSB代表因素B引起的方差;SSAB表示因素A和因素B交互作用引起的方差;SSE代表随机误差。假如因素A的水平发生变化,比如从水平1变化到水平2,无论因素B取那个水平,因变量观测值都要同时增加或同时减小,则表示因素A的变化就可以决定观测值的变化,此时称A和B没有交互作用;如果因素A从水平1变化到水平2,因变量观测值在B的不同水平上变化方向不同,在有些水平上增加,有些水平上减小,也就是需要A和B交叉的水平才能确定因变量的变化,此时称因素A和B存在交互作用。
分析步骤
1、提出成对假设;原假设是多因素方差分析原假设为各因素的各个水平下,因变量的均值没有显著性差异;备择假设是各因素的各个水平下,因变量的均值不完全相同。
2、构造F统计量;构造3个不同的F统计量:
	 
3、计算F值及p值,做出判断;SPSS会自动计算各统计量观测值和对应的概率p值,并以表格方式输出。根据P值,进行统计检验。如果P值大于显著水平,则不能拒绝原假设,认为因素水平上没有显著差异;如果P值小于显著水平,则拒绝原假设,认为有显著差异。
案例分析
2016年的考研人数创造了历史新高,其中一个重要原因是人们普遍认为学历与薪资收入成正比。现有一份社会调查数据,采集了470名公司员工的学历、工资和工作年限等7项信息。用多因素方差分析方法分析性别和学历对他们的薪资是否有显著影响。
	 
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
分析步骤
	1、选择【分析】-【一般线性模型】-【单变量】,如下图所示,在跳出对话框中将工资选入因变量框,将学历和性别选入固定因子框。
 
2、概要图设置;点击绘图按钮,将学历选为水平轴,性别选入单图,点击添加。
	 
3、点击【选项】按钮,按下图所示操作,其它保持系统默认设置,点击输出结果。
	 
结果分析
1、主体间因子列表。
	 
主体因子列表显示共有教育年限和性别两个因子,分别包含三个水平和两个水平,数字表示因子各水平对应的样本个案数。
2、方差齐性检验结果;
	 
方差齐性检验结果显著性p等于0.000,小于0.05,说明方差齐性检验未通过,因此事后多重比较表也不具参考价值。
3、主体间效应检验表
	 
修正的模型对应的p值为0.000,小于0.05,达到显著水平,说明学历和性别两个因素中至少有一个对当前工资的影响是显著的;学历的主效应F值为.226.372,P=0.000,达到非常显著的水平,说明学历对当前工资影响很大;性别对应的p值为0.022,小于0.05,说明性别对当前工资的影响也是显著的;学历*性别的交互效应p值为0.111,大于显著水平0.05,说明学历和性别交互作用后对当前工资的影响不显著。
4、概要图
	
	 
由图可知,当前工资的均值在男女性别的两个水平上都随着教育年限的增加呈上升趋势。两条线有交叉,说明教育年限和性别有交互效应,但是从主体间效应检验表可知,交互效应没有达到显著性程度。
综合结论:数据分析结果显示学历对工资收入有显著性影响,这也证明考研人数屡创新高有其合理性存在。性别对收入也有显著影响,只是影响程度不及学历因素,说明社会发展到现在,职场对女性的歧视正在逐步降低,但是并未完全消失,仍需社会各方的努力。性别与学历交互后对工资收入没有显著影响,说明两者之间不存在明显的交互作用。
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23