
来源:【公众号】
Python技术
知乎上有许多关于颜值、身材的话题,有些话题的回复数甚至高达几百上千,拥有成千上万的关注者与被浏览数。如果我们在摸鱼的时候欣赏这些话题将花费大量的时间,可以用 Python 制作一个下载知乎回答图片的小脚本,将图片下载到本地。
首先打开 F12 控制台面板,看到照片的 URL 都是 https://pic4.zhimg.com/80/xxxx.jpg?source=xxx 这种格式的。
滚动知乎页面向下翻页,找到一个带 limit,offset 参数的 URL 请求。
检查 Response 面板中的内容是否包含了图片的 URL 地址,其中图片地址 URL 存在 data-original 属性中。
从上图可以看出图片的地址存放在 content 属性下的 data-original 属性中。
下面代码将获取图片的地址,并写入文件。
import re import requests import os import urllib.request import ssl from urllib.parse import urlsplit from os.path import basename import json
ssl._create_default_https_context = ssl._create_unverified_context
headers = {
'User-Agent': "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36",
'Accept-Encoding': 'gzip, deflate' } def get_image_url(qid, title): answers_url = 'https://www.zhihu.com/api/v4/questions/'+str(qid)+'/answers?include=data%5B*%5D.is_normal%2Cadmin_closed_comment%2Creward_info%2Cis_collapsed%2Cannotation_action%2Cannotation_detail%2Ccollapse_reason%2Cis_sticky%2Ccollapsed_by%2Csuggest_edit%2Ccomment_count%2Ccan_comment%2Ccontent%2Ceditable_content%2Cattachment%2Cvoteup_count%2Creshipment_settings%2Ccomment_permission%2Ccreated_time%2Cupdated_time%2Creview_info%2Crelevant_info%2Cquestion%2Cexcerpt%2Cis_labeled%2Cpaid_info%2Cpaid_info_content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%2Cis_recognized%3Bdata%5B*%5D.mark_infos%5B*%5D.url%3Bdata%5B*%5D.author.follower_count%2Cbadge%5B*%5D.topics%3Bdata%5B*%5D.settings.table_of_content.enabled&offset={}&limit=10&sort_by=default&platform=desktop' offset = 0 session = requests.Session()
while True:
page = session.get(answers_url.format(offset), headers = headers)
json_text = json.loads(page.text)
answers = json_text['data']
offset += 10 if not answers:
print('获取图片地址完成')
return pic_re = re.compile('data-original="(.*?)"', re.S)
for answer in answers:
tmp_list = []
pic_urls = re.findall(pic_re, answer['content'])
for item in pic_urls:
# 去掉转移字符 pic_url = item.replace("", "")
pic_url = pic_url.split('?')[0]
# 去重复 if pic_url not in tmp_list:
tmp_list.append(pic_url)
for pic_url in tmp_list:
if pic_url.endswith('r.jpg'):
print(pic_url)
write_file(title, pic_url) def write_file(title, pic_url): file_name = title + '.txt' f = open(file_name, 'a')
f.write(pic_url + 'n')
f.close()
示例结果:
下面代码将读取文件中的图片地址并下载。
def read_file(title):
file_name = title + '.txt' pic_urls = []
# 判断文件是否存在
if not os.path.exists(file_name):
return pic_urls
with open(file_name, 'r') as f:
for line in f:
url = line.replace("n", "")
if url not in pic_urls:
pic_urls.append(url)
print("文件中共有{}个不重复的 URL".format(len(pic_urls)))
return pic_urls
def download_pic(pic_urls, title):
# 创建文件夹
if not os.path.exists(title):
os.makedirs(title)
error_pic_urls = []
success_pic_num = 0 repeat_pic_num = 0 index = 1 for url in pic_urls:
file_name = os.sep.join((title,basename(urlsplit(url)[2])))
if os.path.exists(file_name):
print("图片{}已存在".format(file_name))
index += 1 repeat_pic_num += 1 continue
try:
urllib.request.urlretrieve(url, file_name)
success_pic_num += 1 index += 1 print("下载{}完成!({}/{})".format(file_name, index, len(pic_urls)))
except:
print("下载{}失败!({}/{})".format(file_name, index, len(pic_urls)))
error_pic_urls.append(url)
index += 1 continue
print("图片全部下载完毕!(成功:{}/重复:{}/失败:{})".format(success_pic_num, repeat_pic_num, len(error_pic_urls)))
if len(error_pic_urls) > 0:
print('下面打印失败的图片地址')
for error_url in error_pic_urls:
print(error_url)
结语
今天的文章用 Python 爬虫制作了一个小脚本,如果小伙伴们觉得文章有趣且有用,点个 转发 支持一下吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20