来源:【公众号】
Python技术
知乎上有许多关于颜值、身材的话题,有些话题的回复数甚至高达几百上千,拥有成千上万的关注者与被浏览数。如果我们在摸鱼的时候欣赏这些话题将花费大量的时间,可以用 Python 制作一个下载知乎回答图片的小脚本,将图片下载到本地。
首先打开 F12 控制台面板,看到照片的 URL 都是 https://pic4.zhimg.com/80/xxxx.jpg?source=xxx 这种格式的。
滚动知乎页面向下翻页,找到一个带 limit,offset 参数的 URL 请求。
检查 Response 面板中的内容是否包含了图片的 URL 地址,其中图片地址 URL 存在 data-original 属性中。
从上图可以看出图片的地址存放在 content 属性下的 data-original 属性中。
下面代码将获取图片的地址,并写入文件。
import re import requests import os import urllib.request import ssl from urllib.parse import urlsplit from os.path import basename import json
ssl._create_default_https_context = ssl._create_unverified_context
headers = {
'User-Agent': "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36",
'Accept-Encoding': 'gzip, deflate' } def get_image_url(qid, title): answers_url = 'https://www.zhihu.com/api/v4/questions/'+str(qid)+'/answers?include=data%5B*%5D.is_normal%2Cadmin_closed_comment%2Creward_info%2Cis_collapsed%2Cannotation_action%2Cannotation_detail%2Ccollapse_reason%2Cis_sticky%2Ccollapsed_by%2Csuggest_edit%2Ccomment_count%2Ccan_comment%2Ccontent%2Ceditable_content%2Cattachment%2Cvoteup_count%2Creshipment_settings%2Ccomment_permission%2Ccreated_time%2Cupdated_time%2Creview_info%2Crelevant_info%2Cquestion%2Cexcerpt%2Cis_labeled%2Cpaid_info%2Cpaid_info_content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%2Cis_recognized%3Bdata%5B*%5D.mark_infos%5B*%5D.url%3Bdata%5B*%5D.author.follower_count%2Cbadge%5B*%5D.topics%3Bdata%5B*%5D.settings.table_of_content.enabled&offset={}&limit=10&sort_by=default&platform=desktop' offset = 0 session = requests.Session()
while True:
page = session.get(answers_url.format(offset), headers = headers)
json_text = json.loads(page.text)
answers = json_text['data']
offset += 10 if not answers:
print('获取图片地址完成')
return pic_re = re.compile('data-original="(.*?)"', re.S)
for answer in answers:
tmp_list = []
pic_urls = re.findall(pic_re, answer['content'])
for item in pic_urls:
# 去掉转移字符 pic_url = item.replace("", "")
pic_url = pic_url.split('?')[0]
# 去重复 if pic_url not in tmp_list:
tmp_list.append(pic_url)
for pic_url in tmp_list:
if pic_url.endswith('r.jpg'):
print(pic_url)
write_file(title, pic_url) def write_file(title, pic_url): file_name = title + '.txt' f = open(file_name, 'a')
f.write(pic_url + 'n')
f.close()
示例结果:
下面代码将读取文件中的图片地址并下载。
def read_file(title):
file_name = title + '.txt' pic_urls = []
# 判断文件是否存在
if not os.path.exists(file_name):
return pic_urls
with open(file_name, 'r') as f:
for line in f:
url = line.replace("n", "")
if url not in pic_urls:
pic_urls.append(url)
print("文件中共有{}个不重复的 URL".format(len(pic_urls)))
return pic_urls
def download_pic(pic_urls, title):
# 创建文件夹
if not os.path.exists(title):
os.makedirs(title)
error_pic_urls = []
success_pic_num = 0 repeat_pic_num = 0 index = 1 for url in pic_urls:
file_name = os.sep.join((title,basename(urlsplit(url)[2])))
if os.path.exists(file_name):
print("图片{}已存在".format(file_name))
index += 1 repeat_pic_num += 1 continue
try:
urllib.request.urlretrieve(url, file_name)
success_pic_num += 1 index += 1 print("下载{}完成!({}/{})".format(file_name, index, len(pic_urls)))
except:
print("下载{}失败!({}/{})".format(file_name, index, len(pic_urls)))
error_pic_urls.append(url)
index += 1 continue
print("图片全部下载完毕!(成功:{}/重复:{}/失败:{})".format(success_pic_num, repeat_pic_num, len(error_pic_urls)))
if len(error_pic_urls) > 0:
print('下面打印失败的图片地址')
for error_url in error_pic_urls:
print(error_url)
结语
今天的文章用 Python 爬虫制作了一个小脚本,如果小伙伴们觉得文章有趣且有用,点个 转发 支持一下吧!
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20