来源:早起Python
作者:陈熹
40个Python办公自动化案例合辑
大家好,我是早起。本文将分享一个常见办公场景下的Python自动化案例,主要将涉及以下两个内容
有一个文件夹 货物清单 中含有多张货物清单的影印版 PDF,分别命名为 文件 (1).pdf 文件 (2).pdf ... 文件 (20).pdf,如下所示:
PDF 是纯图片类型,里面的文字信息无法手动复制,同时本例中所有的图片都向左旋转 90 度,大致如下图所示(马赛克部分为无关内容):
我们需要做的是 「 获取图中红框部分 TRACKING# 以及 REF2 冒号后的字符串,用 & 连接后重命名这个 PDF 文件 」 !
也就是需要根据每个PDF内容来批量重命名一大堆文件,最终效果如下
本需求是一个批处理问题,即需要对诸多文件执行类型的操作,基本思路是先完成对一份文件的处理,然后借助 glob 模块获取指定路径所有符合要求的文件路径,执行批处理框架,固后面的操作先针对 文件 (1).pdf
需求中最大的难题在于,PDF 是图片类型,无法按常规方法提取文件。解决思路是利用光学字符识别(OCR)将图片中的文字识别出,然后进行后续操作,这里就涉及到一些先后顺序:
将图片向右旋转回正位
截取需要识别的部分图片
将截取的图片交给 OCR 获取字符串
为了完成 OCR,需要在电脑上安装三个软件:
Ghostscript 32 位
ImageMagick 32 位
tesseract-OCR 32 位
三个软件的下载安装没有特殊的地方(tesseract 配置稍复杂但网络有上诸多教程,这里不再赘述),读者可自行搜索下载及配置
首先导入需要的模块:
from wand.image import Image
from PIL import Image as PI import pyocr import pyocr.builders import io import glob import re import os import shutil
具体的模块用途可以参考下面具体代码。其中 wand 和 pyocr 由于是非标准库需要自行额外安装。打开命令行输入:
pip install wand
pip install pyocr
作为测试以及方便后面的实际运行,需求中的 货物清单 这一文件夹可以放在桌面上。为了获取其中的内容首先我们要明确桌面的路径。每个人每台电脑的桌面路径都不相同,如果直接复制当前电脑桌面的路径,更换电脑或者其他用户调试就需要额外修改。可通过下面基于 os 模块的代码获取桌面路径:
# 获取桌面路径包装成一个函数 def GetDesktopPath(): return os.path.join(os.path.expanduser("~"), 'Desktop')
path = GetDesktopPath() + r'货物清单' # 获取 货物清单 文件夹路径
获取配置好的 tesseract 便于后面调用:
tool = pyocr.get_available_tools()[0]
以 文件 (1).pdf 为例,通过 wand 模块将 PDF 文件转化为分辨率为 300 的 jpeg 图片形式:
image_pdf = Image(filename=path + r'文件 (1).pdf', resolution=300)
image_jpeg = image_pdf.convert('jpeg')
将图片解析为二进制矩阵:
image_lst = [] for img in image_jpeg.sequence:
img_page = Image(image=img)
image_lst.append(img_page.make_blob('jpeg'))
用 io 模块的 BytesIO 方法读取二进制内容为图片形式:
new_img = PI.open(io.BytesIO(image_lst[0]))
由于图片现在处于左旋 90 度的水平位,将其转为正位可以用 rotate() 方法,注意该方法是逆时针旋转,因此回正位需要逆时针旋转 270 度。完善上面的代码,并为 new_img.show() 预览图片:
new_img = PI.open(io.BytesIO(image_lst[0])).rotate(270)
new_img.show()
弹出图片并恢复到了正位,接下来分别截取需要提取部位字符串的图片了,尽量让图片中只有需要识别的部分,获取识别出来容易简单处理获得需要的内容 截取图片用 image.crop((left, top, right, bottom)) 四个参数需要反复调试才能确定。首先提取 TRACKING# 部位需要的内容,经确定四个参数分别是 350 600 1350 730,尝试截取和预览图片:
### 解析1Z开头码 left = 350
top = 600
right = 1300
bottom = 730
image_obj1 = new_img.crop((left, top, right, bottom))
image_obj1.show()
截取成功后可以交给 OCR 了,代码为 tool.image_to_string()
txt1= tool.image_to_string(image_obj1) print(txt1)
通过正则提取红框内需要的内容:
req = 'TRACKING #: (.*)' txt1_real = ''.join(re.findall(req, txt1)[0].split()) print(txt1_real)
用同样的办法也可以提取另一个红框的文字:
### 解析C开头码 left = 205 top = 1170 right = 2450 bottom = 1200 image_obj2 = new_img.crop((left, top, right, bottom)) txt2 = tool.image_to_string(image_obj2) req = 'C.d+d' txt2_real = re.findall(req, txt2)[0]
最后将两个字符串和 & 拼接为长字符串,然后通过 os.rename() 完成重命名文件的目的:
file_name = txt1_real + '&' + txt2_real
os.rename(path + r'文件 (1).pdf', path + r'{}.pdf'.format(file_name))
至此我们就完成了需求的一大步,接下来只需要借助 glob 模块遍历目标文件夹,对获取的每一个文件执行上面的操作即可,这样就将全部需求完成,所有的PDF均按照指定字段进行重命名
本文的分享就到这里,上面的 Python办公自动化 案例可以扩展到很多使用场景(核心为提取PDF指定内容+批量重命名),大家可以自己找一些文件测试学习,如果对你有所帮助可以给本文来一波三连~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31