SPSS分析技术:多相关样本的非参数检验;问卷调查的受访者态度分析
下面介绍的是多个关联样本非参数检验的方法和应用案例。
多关联样本的非参数检验
如果是多个相关样本的检验,SPSS适用的检验方法有Friedman检验,Kendall系统系数检验和Cochran Q检验等。
多相关样本的Friedman检验
多相关样本的Friedman检验是利用秩实现多个相关总体分布检验的一种方法,其原假设为:样本来自的多个相关总体的分布无显著差异。检验基本原理是以样本为单位,将所有的样本数据混合,然后按照升序排列,计算各个样本的秩总和及平均秩。如果多个相关样本的分布有显著的差异,那么数值普遍偏大的样本的秩总和必然偏大,数值普遍偏小的样本的秩总和也必然偏小,各组的秩之间就会存在显著差异。若各样本平均秩大致相当,那么可以认为各组的总体分布没有显著差异。
Friedman检验统计量的公式为:
该统计量服从卡方分布,若得到的相伴概率值小于或等于显著性水平,则拒绝原假设,认为两配对样本来自的总体分布有显著差异;反之则接受原假设,认为无显著差异。
多相关样本的Kendall协同系数检验
多相关样本的Kendall协同系数检验主要用于分析评判者的判别标准是否一致公平。其原假设为:评判者评判标准一致,没有显著性差异。
协同系数W在n较大时,近似服从卡方分布,表示各行数据之间的相关程度,W的取值范围是0到1。W越接近1,各行数据之间相关性越强,说明评判者的评价标准越一致。SPSS将自动计算W,并给出对应的相伴概率值。若相伴概率值小于或等于显著性水平,则拒绝原假设,认为评判标准不一致;反之则接受原假设,认为评判标准一致。
多配对样本的CochranQ检验
多配对样本的CochranQ检验所能处理的数据是二元数据,即只有两个值(如0或1,好和差)。其零假设为:样本来自的多配对总体分布无显著差异。多配对样本的CochranQ检验的计算公式为:
Q统计量近似服从卡方分布。SPSS自动计算Q统计量及相伴概率值。如果得到的相伴概率值小于或等于显著性水平,则拒绝原假设,认为两配对样本来自的总体分布有显著差异;反之则接受零假设,认为无显著差异。
范例分析
针对当前的大学生普遍存在学习状态不佳的问题,我们通过问卷调查在某校随机采访250名学生,获得有效数据247份。该学习状态问卷分为学习动机、学习信心、学习情绪和学习态度四各部分。在本例中,通过分析了解当前大学生学习状态的这四个构成要素之间的分布是否有显著差异,如有差异,表现在哪些方面。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
分析步骤
选择菜单【分析】-【非参数检验】-【相关样本】,打开【非参数检验:两个或两个以上的相关样本】。将学习动机、学习信心、学习情绪和学习态度这四个字段选入检验字段,检验方法选择系统默认设置【根据数据自动选择检验】。各选项卡其他选项也均选择系统默认设置。单击【运行】,SPSS输出本例非参数检验分析结果。
结果解释
从非参数检验的汇总表可知,检验的渐进显著性概率值P=0.000<0.001,拒绝原假设,表明大学生学习状态的四个构成要素之间的分布差异非常显著。
由Frideman检验的辅助视图可知,学习动机的平均秩为3.16,是最高值;学习态度的平均秩为1.94,是最低值,二者差异显著。
由四项构成要素的成对比较视图可以看出:除了【学习信心-学习情绪】的检验结果为0.169,大于0.05以外,其余各组对比检验的P值均小于0.05,拒绝原假设,这说明大学生学习状态的四个构成要素在分布上相互之间几乎均呈现显著差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31