
SPSS分析技术:多相关样本的非参数检验;问卷调查的受访者态度分析
下面介绍的是多个关联样本非参数检验的方法和应用案例。
多关联样本的非参数检验
如果是多个相关样本的检验,SPSS适用的检验方法有Friedman检验,Kendall系统系数检验和Cochran Q检验等。
多相关样本的Friedman检验
多相关样本的Friedman检验是利用秩实现多个相关总体分布检验的一种方法,其原假设为:样本来自的多个相关总体的分布无显著差异。检验基本原理是以样本为单位,将所有的样本数据混合,然后按照升序排列,计算各个样本的秩总和及平均秩。如果多个相关样本的分布有显著的差异,那么数值普遍偏大的样本的秩总和必然偏大,数值普遍偏小的样本的秩总和也必然偏小,各组的秩之间就会存在显著差异。若各样本平均秩大致相当,那么可以认为各组的总体分布没有显著差异。
Friedman检验统计量的公式为:
该统计量服从卡方分布,若得到的相伴概率值小于或等于显著性水平,则拒绝原假设,认为两配对样本来自的总体分布有显著差异;反之则接受原假设,认为无显著差异。
多相关样本的Kendall协同系数检验
多相关样本的Kendall协同系数检验主要用于分析评判者的判别标准是否一致公平。其原假设为:评判者评判标准一致,没有显著性差异。
协同系数W在n较大时,近似服从卡方分布,表示各行数据之间的相关程度,W的取值范围是0到1。W越接近1,各行数据之间相关性越强,说明评判者的评价标准越一致。SPSS将自动计算W,并给出对应的相伴概率值。若相伴概率值小于或等于显著性水平,则拒绝原假设,认为评判标准不一致;反之则接受原假设,认为评判标准一致。
多配对样本的CochranQ检验
多配对样本的CochranQ检验所能处理的数据是二元数据,即只有两个值(如0或1,好和差)。其零假设为:样本来自的多配对总体分布无显著差异。多配对样本的CochranQ检验的计算公式为:
Q统计量近似服从卡方分布。SPSS自动计算Q统计量及相伴概率值。如果得到的相伴概率值小于或等于显著性水平,则拒绝原假设,认为两配对样本来自的总体分布有显著差异;反之则接受零假设,认为无显著差异。
范例分析
针对当前的大学生普遍存在学习状态不佳的问题,我们通过问卷调查在某校随机采访250名学生,获得有效数据247份。该学习状态问卷分为学习动机、学习信心、学习情绪和学习态度四各部分。在本例中,通过分析了解当前大学生学习状态的这四个构成要素之间的分布是否有显著差异,如有差异,表现在哪些方面。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
分析步骤
选择菜单【分析】-【非参数检验】-【相关样本】,打开【非参数检验:两个或两个以上的相关样本】。将学习动机、学习信心、学习情绪和学习态度这四个字段选入检验字段,检验方法选择系统默认设置【根据数据自动选择检验】。各选项卡其他选项也均选择系统默认设置。单击【运行】,SPSS输出本例非参数检验分析结果。
结果解释
从非参数检验的汇总表可知,检验的渐进显著性概率值P=0.000<0.001,拒绝原假设,表明大学生学习状态的四个构成要素之间的分布差异非常显著。
由Frideman检验的辅助视图可知,学习动机的平均秩为3.16,是最高值;学习态度的平均秩为1.94,是最低值,二者差异显著。
由四项构成要素的成对比较视图可以看出:除了【学习信心-学习情绪】的检验结果为0.169,大于0.05以外,其余各组对比检验的P值均小于0.05,拒绝原假设,这说明大学生学习状态的四个构成要素在分布上相互之间几乎均呈现显著差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10