
SPSS分析技术:多相关样本的非参数检验;问卷调查的受访者态度分析
下面介绍的是多个关联样本非参数检验的方法和应用案例。
多关联样本的非参数检验
如果是多个相关样本的检验,SPSS适用的检验方法有Friedman检验,Kendall系统系数检验和Cochran Q检验等。
多相关样本的Friedman检验
多相关样本的Friedman检验是利用秩实现多个相关总体分布检验的一种方法,其原假设为:样本来自的多个相关总体的分布无显著差异。检验基本原理是以样本为单位,将所有的样本数据混合,然后按照升序排列,计算各个样本的秩总和及平均秩。如果多个相关样本的分布有显著的差异,那么数值普遍偏大的样本的秩总和必然偏大,数值普遍偏小的样本的秩总和也必然偏小,各组的秩之间就会存在显著差异。若各样本平均秩大致相当,那么可以认为各组的总体分布没有显著差异。
Friedman检验统计量的公式为:
该统计量服从卡方分布,若得到的相伴概率值小于或等于显著性水平,则拒绝原假设,认为两配对样本来自的总体分布有显著差异;反之则接受原假设,认为无显著差异。
多相关样本的Kendall协同系数检验
多相关样本的Kendall协同系数检验主要用于分析评判者的判别标准是否一致公平。其原假设为:评判者评判标准一致,没有显著性差异。
协同系数W在n较大时,近似服从卡方分布,表示各行数据之间的相关程度,W的取值范围是0到1。W越接近1,各行数据之间相关性越强,说明评判者的评价标准越一致。SPSS将自动计算W,并给出对应的相伴概率值。若相伴概率值小于或等于显著性水平,则拒绝原假设,认为评判标准不一致;反之则接受原假设,认为评判标准一致。
多配对样本的CochranQ检验
多配对样本的CochranQ检验所能处理的数据是二元数据,即只有两个值(如0或1,好和差)。其零假设为:样本来自的多配对总体分布无显著差异。多配对样本的CochranQ检验的计算公式为:
Q统计量近似服从卡方分布。SPSS自动计算Q统计量及相伴概率值。如果得到的相伴概率值小于或等于显著性水平,则拒绝原假设,认为两配对样本来自的总体分布有显著差异;反之则接受零假设,认为无显著差异。
范例分析
针对当前的大学生普遍存在学习状态不佳的问题,我们通过问卷调查在某校随机采访250名学生,获得有效数据247份。该学习状态问卷分为学习动机、学习信心、学习情绪和学习态度四各部分。在本例中,通过分析了解当前大学生学习状态的这四个构成要素之间的分布是否有显著差异,如有差异,表现在哪些方面。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
分析步骤
选择菜单【分析】-【非参数检验】-【相关样本】,打开【非参数检验:两个或两个以上的相关样本】。将学习动机、学习信心、学习情绪和学习态度这四个字段选入检验字段,检验方法选择系统默认设置【根据数据自动选择检验】。各选项卡其他选项也均选择系统默认设置。单击【运行】,SPSS输出本例非参数检验分析结果。
结果解释
从非参数检验的汇总表可知,检验的渐进显著性概率值P=0.000<0.001,拒绝原假设,表明大学生学习状态的四个构成要素之间的分布差异非常显著。
由Frideman检验的辅助视图可知,学习动机的平均秩为3.16,是最高值;学习态度的平均秩为1.94,是最低值,二者差异显著。
由四项构成要素的成对比较视图可以看出:除了【学习信心-学习情绪】的检验结果为0.169,大于0.05以外,其余各组对比检验的P值均小于0.05,拒绝原假设,这说明大学生学习状态的四个构成要素在分布上相互之间几乎均呈现显著差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08