CDA数据分析师 出品
编译:Mika
【导读】
每天在推特上都有数百万条推文被发送,在这些推文中,我们可以收集到很多关于人们生活的信息:他们什么时候醒来,去哪里旅行,以及他们对几乎所有事情的看法。
在本文中,前纽约时报数据艺术家杰尔·索普探讨了我们可以从这些丰富的数据中得出什么用途。
几年前我开始用推特。它最吸引我的一点是人们会在早上起床的时候,会发一条推特说:“早上好!”
作为一个加拿大人,我喜欢这种问候方式。同时我也是个典型的技术男,于是我写了个程序,用来记录24小时内推特上所有发的“早上好!”。
之后我问了自己一个我最喜欢的问题,“那会是个什么样子?”
结果就像这样:
▲ 全球人们在醒来时发“早上好!”所组成的模型
我们看到这个由世界各地人们在醒来时发“早上好!”所组成的人浪。
当中绿色所代表的人,在早上8点左右醒来。
橙色代表的人,他们在9点左右发“早上好!”
之后这些红色代表的人 ,他们在10点左右发“早上好!”。
我们会发现,10点发的人比8点的多。
而且,事实上如果你观察这幅图,我们就能稍微了解世界各地人们起床时间的不同。
比如说西海岸的人就比东海岸的人起得稍晚一些。
但人们在推特上不只是发这个,对吧?
我们也收到这些推特,诸如:
“我刚刚在奥兰多降落了!!”
▲ 推文“我刚刚在奥兰多降落了!!”
或者“我刚刚降落在德州!” 又或者“我刚刚在洪都拉斯降落了!”
这些内容没完没了,总有人在发这些。
从表面上看,这些人只是告诉我们一些他们的旅行信息。
但是我们都知道真相,不是吗?
这些人就是在炫耀!炫耀他们在开普敦,而我不在!
于是我想,我们如何才能利用这些虚荣,并将其转化成实用的东西?
因此我用类似于处理“早上好”的方法,将所有人的旅行制成统计图。
因为我知道他们在哪落地,他们直接告诉我了。而且我知道他们在哪儿居住,因为他们推特的个人简介上都写着呢。
▲ 全球各地人们旅行数据模型
所以我在推特上建立了一个模型,记录在36个小时内世界各地的人是如何旅行的。
这是一种原始模型,如果我们留意推特和脸书和其它一切社交媒体上的所有人,我们其实会获得一幅清晰的图像,反映人们如何在各地之间旅行。
▲ 36小时内世界各地人们的旅行数据
而这幅图像事实上对科学家来说非常有用,尤其是那些研究疾病扩散问题的专家。
我在《纽约时报》工作。在过去两年里,我们一直做一个叫“Cascade”的项目,它在某种程度上和这个模型很相似。
但是我们不是对人们如何流动,而是对人们如何发表言论进行建模。我们在研究针对某个事件的讨论看起来是怎样的。
这里有一个例子,这是一场围绕一篇文章的讨论。文章名字是《那个人们忘记死亡的小岛》,它描述了一个希腊的小岛,岛上的人们都非常非常长寿。
这里我们所看到的,这是一场从左下角那第一条推特开始延伸开来的讨论。
因此我们得以了解到,在9小时里这场讨论的规模。
▲ 9小时内对文章《那个人们忘记死亡的小岛》的讨论
我们来把时间跨度拉大到12小时。我们也可以在三维的模式下观察这场讨论。
▲ 12小时内对文章《那个人们忘记死亡的小岛》的讨论
而且这种三维的视角其实对我们更加有用。因为作为人类,我们非常习惯于三维的事物。
所以我们能够看着讨论的那些细小分支,来了解到底发生了什么。
这是一个交互式的,探索式的工具。我们可以仔细研究这个讨论的每一步,可以看看:
《纽约时报》每个月产生大约6500篇文章,我们可以为每一篇所引发的议论都建立一个模型。
每个模型看起来不太一样,这取决于故事本身,以及它引起人们议论的速度,还有议论传播的范围。
这些结构我管它们叫“讨论大楼”,最终看起来不尽相同。
我向你们展示的这些项目,我认为它们在做同样的事情。
即我们可以将碎片化的数据拼凑起来,从而产生更大的价值。我们可以用它们来做更激动人心的事情。
但是目前为止我们只提到了推特,而推特不是数据的全部。
正如刚才讨论的,网络上有很多很多很多数据。
我尤其要向你们介绍其中一种。因为你们所有人,这里的每一位观众,包括我在内都是产生数据的机器,我们时时刻刻都在产生数据。
我们每一个人,我们都在产生数据,也有一些人在储存这些数据。
通常来说,我们信任各种储存数据的公司,但是我要在这里提出的是,相比起信任那些公司,让它们储存数据,我们应该相信我们自己。
因为我们拥有那些数据,这是我们应该牢记的,他人对你的任何评价都属于你。
因此,我希望我们所有人能带着我们储存的宝贵数据走到一起,一起利用那些数据来解决某些世界上最棘手的难题。
因为大数据能解决大问题,但是我认为如果我们每个人都参与进来,才能将能使它发挥最大的效用。谢谢!
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20