大数据时代下供应链金融该怎么玩
1、基础数据的真实性
要使用大数据,就必需保证数据的真实性,尤其是基础数据的真实性。当前,GDP、吞吐量、货运量、仓储设施、投资额、主营收入等数据都有水分。地方GDP加总超过国家GDP,集装箱重复装卸计算吞吐量,关联企业互开发票增加销售额等,致使数据失真。因此,改革考核体制、改革统计体制已是当务之急。
2、数据要能聚焦成指标
数据本身是枯燥的、杂乱的,但形成指标后便具有生命。科学地设定指标,确定指标间的勾稽关系,才能准确地判断事物发展的规律和路径。先行指标有重要指导作用。数据的负面影响是信息污染,影响判断。
3、不同数据体系要互联互通
在市场化条件下,数据是资源和产品。利益分割使信息孤岛现象更为严重,甚至于公共信息都被当作部门利益而垄断起来。部门数据、行业数据、企业数据、国际数据相互割裂,大数据不能发挥应有的作用。
4、积累准确的参数
在实际工作中,基础参数极为重要,尤其是是临界参数。参数是基准,木直中绳,参数就是木工打出的那根基线。
在我国,货币发行量、货币流通量、每百平方公里道路里程、仓储业投资规模、物流园区投资规模、港口数量和吞吐规模、物流强度、投资强度、投入产出比、均缺少基准,才出现了货币超发行,通货膨胀,港口过剩,产能过剩等问题。
5、先进的数据应用理念
如果数据是客观的,使用数据的人还要有先进的应用理念。这与经验、学识、能力有关。
决策,尤其是与企业命运有关的决策,不能参杂私念和人情因素。如果我们认真追究产能过剩形成的原因、追究投资失误的原因,都与理念有关。
大数据下供应链金融发展趋势
1、向信用担保方向发展
电商企业根据自己掌握的数据,对客户的业务、信用进行分析,在安全范围内提供小量、短期融资,把沉淀在网上的无成本资金盘活。
电商规模越大,沉淀资金越多。如果加上吸收存款功能,就变为金融机构;在大数据的引导下,银行业也会释放出这种灵活性,这样,信用担保就不仅仅限于大企业,而是可用于中小企业,业务范围将大大扩展。
2、向着实物担保方向发展
任何时候,实物担保都不可或缺。它是电商融资和银行融资的安全底线,要保证实物的真实性和安全性,需要物流企业与之配合。
3、商贸、金融和物流三方合作建设供应链金融平台
平台是大数据的汇集者。交易平台与物流平台集成、与支付系统集成、与交易融资系统集成,达到信息流、资金流、物流、商流的无缝隙连接;确保交易资源真实可靠、贸易行为真实可靠、担保物变现渠道畅通、担保物价格波动监控实时等。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21