CDA数据分析师 出品
编译:Mika
【导读】
数据分析师实际上做什么?在本文中数据分析师Alex Freberg就给我们分享了,数据分析师的日常工作,成为数据分析师要什么要求,要什么技能以及薪资情况。
大家好,我叫Alex Freberg。
今天,我们将聊一聊关于数据分析师日常工作的全部内容。同时我们还将介绍作为数据分析师,你所需要的学历、技能,以及你能获得的薪资水平。
01、数据分析师的工作内容
首先让我们看到工作描述。
下面给你介绍一下数据分析师工作的每个部分。
定义问题
第一个部分就是定义问题。
你首先要做的就是明白客户到底需要什么。
他们是需要仪表盘、报告;还是需要你对他们的产品做出分析,并给出建议。
当你弄明白后,你需要制定出行动计划:
通常这是你的工作去与团队进行这方面的沟通。
收集数据
接下来你需要做的就是收集数据。
数据的来源有很多。是来自SQL备份,文本文件或者 API,还是全都有。你需要把所有的数据都放在一处。
接着你需要跟程序员一起开发ETL过程,即提取、转换和加载。
因此你将跟程序要一起获取数据,然后创建商业规则进行转换,也就是你想让系统看起来是怎样的。
接着加载数据。
这个步骤也是所谓的开发ETL管道。如果你的数据是每周或每月产生的,你不需要每次手工进行这个步骤,因此搭建管道将创建自动的方式 每次获取数据。
这样的话,每次你将数据导入系统将节省大量时间。
最后还有数据聚合。也就是让数据标准化,全部整合到一起,而不是分散的。
清洗数据
接下来作为数据分析师,你需要清洗数据。
数据总是乱糟糟的。
相信我,所有的情况我都见识过了。有的人会用三种不同的数据格式;有些人的名字会莫名其妙的大写;还有的人忘记添加用户ID,导致你在系统中定位不到。
之所以要做这些步骤,是为了在之后的过程中让数据更好用。这部分工作有些是让数据规范化和标准化,从而在之后进行数据可视化或报告的时候,所有的数据看起来都是一样的,能被用到你想用的任何部分。
最后就是数据验证。也就是品质保障,通过检查数据对数据运行查询,确保数据是看上去那么回事。
生成报告和可视化
接下来你要做的就是让数据生成报告和可视化。
很多时候做这一步是为了创建视图。视图能将许多图表结合成一个。
接着选择你希望用在报告和可视化中的一部分数据,根据你想在报告和可视化中所呈现的每个视图设计有所不同。
最后你要做的是创建报告和可视化。
就我个人而言,我在所有的报告中都使用SQL。因此我喜欢对该步骤自动化。
如果客户每周或每月想要报告,我可以创建存储程序或方式,从而能每周或每月自动发送最新的数据。
你还可以将数据连接相关数据可视化工具,比如Tableau、Power BI、Python或者R。
你想确保你的报告可视化能够解决你想解决的问题,从而我们能遵循初衷,也就是客户想要什么,他们需要什么。这个步骤就是为了确保该问题能解决。
02、成为数据分析师需要哪些条件
下面让我们看到数据分析师的要求。
通常你需要本科学历,很多工作都有这方面的要求,很多时候这是最低要求。
通常他们要求计算机科学、统计学、数学、金融相关专业。
有些职位可能还需要研究生学历,这并不经常发生。但我遇到过某些数据分析师职位,要求研究生学历。
我并不认为为了成为数据分析,你就要有研究生学历,但这肯定有一定帮助。特别是当许多工作都至少要求你有本科学历。
03、数据分析师需要掌握哪些技能
接下来我们看到数据分析师需要使用的技能。
首先是SQL,接着还有R和Python,Tableau、 Power BI也就是数据可视工具,SAS/SPSS、Excel,还有一些云平台比如AWS/Azure。
04、数据分析师能赚多少钱
下面看到薪资情况。
数据分析师需要做很多工作,为了成为数据分析师你需要学很多东西。但很多技能你都能在网上免费学到,或者通过能承受的费用在Udemy Coursera或者Edx等平台上学到。
有很多习得成为数据分析师技能的方式,我非常建议你试试,看是否有你非常感兴趣的内容。
我希望今天分享的内容能让你稍微了解数据分析师日常工作究竟在做些什么,感谢观看。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10