热线电话:13121318867

登录
首页精彩阅读就是这么简单!Pyecharts绘制可视化地图专辑
就是这么简单!Pyecharts绘制可视化地图专辑
2021-07-16
收藏

来源:数据STUDIO

作者:云朵君

Pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒,pyecharts 是为了与 Python 进行对接,方便在 Python 中直接使用数据生成图。

Pyecharts绘制地图如此轻松,几行代码搞定多种形式的数据地图

一、安装

首先需要安装python第三方包 -- pyecharts, 目前最新版本为1.8.1。

pip install pyecharts

自从 v0.3.2 开始,为了缩减项目本身的体积以及维持 pyecharts项目的轻量化运行,pyecharts将不再自带地图 js 文件。如用户需要用到地图图表,可自行安装对应的地图文件包。下面介绍如何安装。

  • 全球国家地图echarts-countries-pypkg (1.9MB): 世界地图和 213 个国家,包括中国地图
  • 中国省级地图echarts-china-provinces-pypkg (730KB):23 个省,5 个自治区
  • 中国市级地图echarts-china-cities-pypkg (3.8MB):370 个中国城市
  • 中国县区级地图echarts-china-counties-pypkg (4.1MB):2882 个中国县·区
  • 中国区域地图echarts-china-misc-pypkg (148KB):11 个中国区域地图,比如华南、华北

选择自己需要安装地图相关的扩展包。

pip install echarts-countries-pypkg
pip install echarts-china-provinces-pypkg
pip install echarts-china-cities-pypkg
pip install echarts-china-counties-pypkg
pip install echarts-china-misc-pypkg
pip install echarts-united-kingdom-pypkg

可以选择豆瓣源或清华源加速安装。

pip install pyecharts -i http://pypi.douban.com/simple 
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-countries-pypkg

pyecharts版本 v0.5.x 和 v1 间不兼容,v1 是一个全新的版本,语法也有很大不同。

查看pyecharts版本。

import pyecharts print(pyecharts.__version__)         

做好准备后,就可以开始绘图了。如果你是新手,对pyehcarts还有些陌生,可以参见官方5分钟上手:

二、绘制地图

Pyehcarts共有有四种地理图表,

  • Map地图
    (https://pyecharts.org/#/zh-cn/geography_charts?id=map:地图)以此为基础,熟悉绘图基本步骤及各个配置项。
  • Geo:地理坐标系
    (https://pyecharts.org/#/zh-cn/geography_charts?id=geo:地理坐标系)本文重点介绍
  • BMap:百度地图
    (https://pyecharts.org/#/zh-cn/geography_charts?id=bmap:百度地图)
    百度地图需要申请开发者 AK,(https://lbsyun.baidu.com/)。这里不做细说,大家有兴趣可以去pyecharts官网学习。
  • Map3D:三维地图 (https://pyecharts.org/#/zh-cn/3d_charts?id=map3d-三维地图)

一、Map

以星巴克门店在全球的分布为例。本例数据来源Kaggle星巴克数据:https://www.kaggle.com/starbucks/store-locations

就是这么简单!Py<a href='/map/echarts/' style='color:#000;font-size:inherit;'>echarts</a>绘制可视化<a href='/map/ditu/' style='color:#000;font-size:inherit;'>地图</a>专辑

数据样例:

就是这么简单!Py<a href='/map/echarts/' style='color:#000;font-size:inherit;'>echarts</a>绘制可视化<a href='/map/ditu/' style='color:#000;font-size:inherit;'>地图</a>专辑
from pyecharts.charts import Map from pyecharts import options as opts from pyecharts.globals import ThemeType, CurrentConfig

CurrentConfig.ONLINE_HOST = 'C:/python/pyecharts-assets-master/assets/' # 参考 https://github.com/pyecharts/pyecharts-assets df = starbuck['English']
data = df.value_counts()
datas = [(i, int(j)) for i, j in zip(data.index, data.values)] # 实例化一个Map对象 map_ = Map(init_opts=opts.InitOpts(theme=ThemeType.PURPLE_PASSION)) # 世界地图 map_.add(series_name="门店数量", data_pair=datas, maptype="world") # 设置系列配置项 map_.set_series_opts(label_opts=opts.LabelOpts(is_show=False))   # 不显示label # 设置全局配置项 map_.set_global_opts(
     title_opts=opts.TitleOpts(title="星巴克门店数量在全球分布", 
                               pos_left='40%', 
                               pos_top='10'),   # 调整title位置      legend_opts=opts.LegendOpts(is_show=False),
     visualmap_opts=opts.VisualMapOpts(
         max_=13608, 
         min_=1, 
         is_piecewise=True,
       pieces=[{"max"9"min"1"label""1-9""color""#00FFFF"},
                 {"max"99"min"10"label""10-99""color""#FF69B4"},
                 {"max"499"min"100"label""100-499""color""#0000FF"},
                 {"max"999"min"500"label""500-999""color""#00BFFF"},
                 {"max"2000"min"1000"label""1000-2000""color""#228B22"},
                 {"max"3000"min"2000"label""2000-3000""color""#FF0000"},
                 {"max"20000"min"10000"label"">=10000""color""#FFD700"}
                ] # 分段  添加图例注释和颜色      )
) # 渲染在网页上   有交互性 map_.render('星巴克门店在全球的分布.html')

输出

就是这么简单!Py<a href='/map/echarts/' style='color:#000;font-size:inherit;'>echarts</a>绘制可视化<a href='/map/ditu/' style='color:#000;font-size:inherit;'>地图</a>专辑

绘图步骤:

1、创建实例

Map(init_opts=opts.InitOpts(theme=ThemeType.PURPLE_PASSION))

创建实例并初始化配置。

可配置图表宽度、高度、渲染风格、标题、主题、背景颜色等,详情参见下面连接
https://pyecharts.org/#/zh-cn/global_options?id=initopts:初始化配置项

theme: pyecharts内置提供了10+ 种不同的风格, 参见
https://pyecharts.org/#/zh-cn/themes

2、添加数据

.add()添加了数据。

  • series_name: 系列名称,用于 tooltip 的显示,legend 的图例筛选。
  • data_pair: 数据项,每个数据项由一个个元组组成:(坐标点名称,坐标点值) 实际上一个是地区名称另一个是对应的数据。pyecharts绘制地图只需导入城市名称和数值即可,因为区县级以上城市的经纬度信息都已经在模块中存在,可以在
    https://github.com/pyecharts/pyecharts/blob/master/pyecharts/datasets/city_coordinates.json中找到。本实例中是国家名称与门店数量组成的数据项。[('United States', 13608),
    ('China', 2734), ('Canada', 1468), ('Japan', 1237), ... ]
  • maptype='world',这里是指地图类型,默认为china中国。地图类型请参见:https://github.com/pyecharts/pyecharts/blob/master/pyecharts/datasets/map_filename.json

3、设置系列配置项

.set_series_opts()

https://pyecharts.org/#/zh-cn/series_options

除了在.add()中设置部分配置项外,就是使用.set_series_opts()配置图元样式、文字样式、标签样式、点线样式等。

4、设置全局配置项

.set_global_opts() 配置标题、动画、坐标轴、图例等。
https://pyecharts.org/#/zh-cn/global_options

就是这么简单!Py<a href='/map/echarts/' style='color:#000;font-size:inherit;'>echarts</a>绘制可视化<a href='/map/ditu/' style='color:#000;font-size:inherit;'>地图</a>专辑

本实例中:

  • min_: 指定 visualMapPiecewise 组件的最小值。
  • max_: 指定 visualMapPiecewise 组件的最大值。
  • is_piecewise: 是否为分段型。
  • pieces: 自定义的每一段的范围,以及每一段的文字,以及每一段的特别的样式。

5、生成的地图以html格式保存

.render()将生成的地图html格式保存。

二、Geo

Geo 图类型,使用type_: str = "scatter" 参数控制。

有 scatter, effectScatter, heatmap, lines4 种。

from pyecharts.globals import GeoType     GeoType.GeoType.EFFECT_SCATTERGeoType.HEATMAPGeoType.LINES 

1、动态涟漪散点图 effectScatter

V1 版本开始支持链式调用。

数据样例:

就是这么简单!Py<a href='/map/echarts/' style='color:#000;font-size:inherit;'>echarts</a>绘制可视化<a href='/map/ditu/' style='color:#000;font-size:inherit;'>地图</a>专辑
import pandas as pd from pyecharts.globals import ThemeType, CurrentConfig, GeoType from pyecharts import options as opts from pyecharts.charts import Geo

CurrentConfig.ONLINE_HOST = 'C:/python/pyecharts-assets-master/assets/' pandas读取csv文件数据 df = pd.read_csv('directory2.csv', encoding='utf-8')['城市']
data = df.value_counts() #自定义各城市的经纬度 # geo_cities_coords = {df.iloc[i]['城市']:[df.iloc[i]['经度'],df.iloc[i]['纬度']] for i in range(len(df))} datas = [(i, int(j)) for i, j in zip(data.index, data.values)]
print(datas)

geo = (Geo(init_opts=opts.InitOpts(width='1000px', 
                                   height='600px', 
                                   theme=ThemeType.PURPLE_PASSION),
           is_ignore_nonexistent_coord = True)
       .add_schema(maptype='china', 
                   label_opts=opts.LabelOpts(is_show=True))   # 显示label  省名        .add('门店数量', 
            data_pair=datas, 
            type_=GeoType.EFFECT_SCATTER, 
            symbol_size=8,
            # geo_cities_coords=geo_cities_coords            )
       .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
       .set_global_opts(
           title_opts=opts.TitleOpts(title='星巴克门店在中国的分布'),
           visualmap_opts=opts.VisualMapOpts(max_=550,
                                             is_piecewise=True,
                                             pieces=[
                     {"max"50"min"0"label""0-50""color""#708090"},
                     {"max"100"min"51"label""51-100""color""#00FFFF"},
                     {"max"200"min"101"label""101-200""color""#FF69B4"},
                     {"max"400"min"201"label""201-400""color""#FFD700"},
                     {"max"800"min"600"label""600-800""color""#FF0000"},])
       )
      )

geo.render("星巴克门店在中国的分布.html")

输出

就是这么简单!Py<a href='/map/echarts/' style='color:#000;font-size:inherit;'>echarts</a>绘制可视化<a href='/map/ditu/' style='color:#000;font-size:inherit;'>地图</a>专辑

Geo新增坐标点# 新增一个坐标点
.add_coordinate(
# 坐标地点名称
name: str,
# 经度
longitude: Numeric,
# 纬度
latitude: Numeric, )
# 新增 json 文件格式的坐标数据
.add_coordinate_json(
# json 文件格式的坐标数据
# 格式如下
# {
# "阿城": [126.58, 45.32],
# "阿克苏": [80.19, 41.09]
# }
json_file: str # 坐标文件路径
)
2、热力图heatmapfrom pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType
CurrentConfig.ONLINE_HOST = 'C:/python/pyecharts-assets-master/assets/'
# pandas读取csv文件数据
df = pd.read_csv('directory2.csv', encoding='utf-8')['城市']
data = df.value_counts()
datas = [(i, int(j)) for i, j in zip(data.index, data.values)]
print(datas)
geo = (
Geo(init_opts=opts.InitOpts(width='1000px',
height='600px',
theme=ThemeType.DARK),
is_ignore_nonexistent_coord=True)
.add_schema(maptype="china") #maptype选择地图种类
.add(series_name="门店数量", # 系列名称
data_pair=datas, # 数据项 (坐标点名称,坐标点值)
blur_size=20,
symbol_size= 5,
type_=ChartType.HEATMAP #类型选为热力图
)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
visualmap_opts=opts.VisualMapOpts(max_=800,is_piecewise=True),
title_opts=opts.TitleOpts(title="星巴克门店在中国的分布热力图"))
)
geo.render( '星巴克门店在中国的分布热力图.html')

输出

就是这么简单!Py<a href='/map/echarts/' style='color:#000;font-size:inherit;'>echarts</a>绘制可视化<a href='/map/ditu/' style='color:#000;font-size:inherit;'>地图</a>专辑

3、动态轨迹图lines

pyecharts可以生成地理空间流动图,用来表示航班数量、人口流动等等。

from pyecharts import options as opts from pyecharts.charts import Geo from pyecharts.faker import Faker from pyecharts.globals import ChartType, SymbolType, CurrentConfig import  random

datas = [] for _ in range(6):
    datas.append(tuple(random.sample(Faker.provinces, 2)))
    
CurrentConfig.ONLINE_HOST = 'C:/python/pyecharts-assets-master/assets/' geo = (
    Geo(init_opts=opts.InitOpts(width='1000px', 
                                height='600px', 
                                theme=ThemeType.CHALK))
    .add_schema(
        maptype="china",
        itemstyle_opts=opts.ItemStyleOpts(color="#323c48", border_color="#111"),
        label_opts=opts.LabelOpts(is_show=True)
    )
    .add(
        "",
        [list(z) for z in zip(Faker.provinces, Faker.values())],
        type_=ChartType.EFFECT_SCATTER,
        color="white",
    )
    .add(
        "出差",
        data_pair = datas,
        type_=ChartType.LINES,
        effect_opts=opts.EffectOpts(
            symbol=SymbolType.DIAMOND, symbol_size=6, color="blue"         ),
        linestyle_opts=opts.LineStyleOpts(curve=0.2),
    )
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(title_opts=opts.TitleOpts(title="动态轨迹图"))
    .render("动态轨迹图.html")
)

输出

就是这么简单!Py<a href='/map/echarts/' style='color:#000;font-size:inherit;'>echarts</a>绘制可视化<a href='/map/ditu/' style='color:#000;font-size:inherit;'>地图</a>专辑

如果需要再添加一个其他类别的动态轨迹,只需在链式中添加:

.add('旅游',
     [('上海','拉萨'),('拉萨','大理'),('大理','成都'),('成都','海口')],
     type_=ChartType.LINES,
     effect_opts=opts.EffectOpts(
         symbol=SymbolType.ARROW, symbol_size=6, color="orange"),
     linestyle_opts=opts.LineStyleOpts(curve=0.5)
    )

输出如下,可以点击图例来筛选类别。

就是这么简单!Py<a href='/map/echarts/' style='color:#000;font-size:inherit;'>echarts</a>绘制可视化<a href='/map/ditu/' style='color:#000;font-size:inherit;'>地图</a>专辑

这边用到两个配置项:

  • effect_opts= opts.EffectOpts(symbol)涟漪特效配置项https://pyecharts.org/#/zh-cn/series_options?id=effectopts:涟漪特效配置项symbol: 特效图形的标记。ECharts 提供的标记类型包括 'circle', 'rect', 'roundRect', 'triangle', diamond', 'pin', 'arrow', 'none'可以通过 'image://url' 设置为图片,其中 URL 为图片的链接,或者 dataURI。
  • linestyle_opts=opts.LineStyleOpts(curve=0.2)线样式配置项https://pyecharts.org/#/zh-cn/series_options?id=linestyleopts:线样式配置项curve: 线的弯曲度,0 表示完全不弯曲。

4、三维地图

from pyecharts import options as opts from pyecharts.charts import Map3D from pyecharts.globals import ChartType from pyecharts.commons.utils import JsCode

c = (
    Map3D(init_opts=opts.InitOpts(width='1000px', 
                                height='600px', 
                                theme=ThemeType.VINTAGE))
    地图类型     .add_schema(
        itemstyle_opts=opts.ItemStyleOpts( # 图形的颜色             color="#00BFFF"# 或 'rgb(128, 128, 128)'             opacity=1# 图形透明度             border_width=0.8# 描边宽度             border_color="#708090"# 描边颜色         ),
        # Map3D 的 Label 设置         map3d_label=opts.Map3DLabelOpts(
            is_show=False,
            formatter=JsCode("function(data){return data.name + " " + data.value[2];}"),
        ),
        
        # 高亮标签配置项         emphasis_label_opts=opts.LabelOpts(
            is_show=False,
            color="#fff",
            font_size=10,
            background_color="rgba(0,23,11,0)",
        ),
        
        # 光照相关的设置。         light_opts=opts.Map3DLightOpts(
            main_color="#fff",
            main_intensity=1.2,
            main_shadow_quality="high",
            is_main_shadow=False,
            main_beta=10,
            ambient_intensity=0.3,
        ),
    )
    .add(
        series_name="门店数量",
        data_pair=datas,
        # 叠加图的类型         type_=ChartType.BAR3D,
        bar_size=1,
        
        # 三维地图中三维图形的着色效果。         shading="lambert",
        label_opts=opts.LabelOpts(
            is_show=False,
            formatter=JsCode("function(data){return data.name + ' ' + data.value[2];}"),
        ),
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="星巴克门店在中国的分布3D图"))
    .render("map3d_with_bar3d.html")
)

输出

就是这么简单!Py<a href='/map/echarts/' style='color:#000;font-size:inherit;'>echarts</a>绘制可视化<a href='/map/ditu/' style='color:#000;font-size:inherit;'>地图</a>专辑

本例中的主要参数说明:

.add_schema()

地图类型设置,参考pyecharts.datasets.map_filenames.json 文件

  • itemstyle_opts=opts.ItemStyleOpts( ) 图形的颜色
  • map3d_label=opts.Map3DLabelOpts() Map3D 的 Label 设置
  • emphasis_label_opts=opts.LabelOpts() 高亮标签配置项参考 series_options.LabelOpts
  • light_opts=opts.Map3DLightOpts() 光照相关的设置。在 shading 为 'color' 的时候无效。

.add()

  • type_=ChartType.BAR3D, 叠加图的类型(目前只支持Bar3D,Line3D,Lines3D,Scatter3D
  • shading="lambert"三维地图中三维图形的着色效果。ECharts GL 中使用了基于物理的渲染(PBR)来表现真实感材质。echarts-gl 中支持下面三种着色方式:color: 只显示颜色,不受光照等其它因素的影响。
    lambert: 通过经典的 lambert 着色表现光照带来的明暗。
    realistic: 真实感渲染,配合 light.ambientCubemap 和 postEffect 使用可以让展示的画面效果和质感有质的提升。

5、Globe地图

数据来源是pyecharts自带的全球人口数据。

import pyecharts.options as opts from pyecharts.charts import MapGlobe from pyecharts.faker import POPULATION from pyecharts.globals import ThemeType

data = [x for _, x in POPULATION[1:]]
low, high = min(data), max(data)

c = (
    MapGlobe(init_opts=opts.InitOpts(theme=ThemeType.DARK))
    .add_schema()
    .add(
        maptype="world",
        series_name="World Population",
        data_pair=POPULATION[1:],
        is_map_symbol_show=False,
        label_opts=opts.LabelOpts(is_show=False),
    )
    .set_global_opts(
        visualmap_opts=opts.VisualMapOpts(
            min_=low,
            max_=high,
            range_text=["max""min"],
            is_calculable=True,
            range_color=["lightskyblue""yellow""orangered"],
        )
    )
    .render("map_globe_base.html")
)

输出

就是这么简单!Py<a href='/map/echarts/' style='color:#000;font-size:inherit;'>echarts</a>绘制可视化<a href='/map/ditu/' style='color:#000;font-size:inherit;'>地图</a>专辑

本文到此结束,总体来说Pyecharts地图绘图还是比较友好,在不需要多么炫酷的配置前提下,只需要将输入数据格式和类型弄清楚,其余默认配置即可。

地图样式有一定要求时,只需要根据官网上的配置信息调整全局配置项和系列配置项即可。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询