来源:数据STUDIO
作者:云朵君
Pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒,pyecharts 是为了与 Python 进行对接,方便在 Python 中直接使用数据生成图。
Pyecharts绘制地图如此轻松,几行代码搞定多种形式的数据地图。
首先需要安装python第三方包 -- pyecharts, 目前最新版本为1.8.1。
pip install pyecharts
自从 v0.3.2 开始,为了缩减项目本身的体积以及维持 pyecharts项目的轻量化运行,pyecharts将不再自带地图 js 文件。如用户需要用到地图图表,可自行安装对应的地图文件包。下面介绍如何安装。
选择自己需要安装地图相关的扩展包。
pip install echarts-countries-pypkg
pip install echarts-china-provinces-pypkg
pip install echarts-china-cities-pypkg
pip install echarts-china-counties-pypkg
pip install echarts-china-misc-pypkg
pip install echarts-united-kingdom-pypkg
可以选择豆瓣源或清华源加速安装。
pip install pyecharts -i http://pypi.douban.com/simple
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-countries-pypkg
pyecharts版本 v0.5.x 和 v1 间不兼容,v1 是一个全新的版本,语法也有很大不同。
查看pyecharts版本。
import pyecharts print(pyecharts.__version__)
做好准备后,就可以开始绘图了。如果你是新手,对pyehcarts还有些陌生,可以参见官方5分钟上手:
Pyehcarts共有有四种地理图表,
以星巴克门店在全球的分布为例。本例数据来源Kaggle星巴克数据:https://www.kaggle.com/starbucks/store-locations
数据样例:
from pyecharts.charts import Map from pyecharts import options as opts from pyecharts.globals import ThemeType, CurrentConfig
CurrentConfig.ONLINE_HOST = 'C:/python/pyecharts-assets-master/assets/' # 参考 https://github.com/pyecharts/pyecharts-assets df = starbuck['English']
data = df.value_counts()
datas = [(i, int(j)) for i, j in zip(data.index, data.values)] # 实例化一个Map对象 map_ = Map(init_opts=opts.InitOpts(theme=ThemeType.PURPLE_PASSION)) # 世界地图 map_.add(series_name="门店数量", data_pair=datas, maptype="world") # 设置系列配置项 map_.set_series_opts(label_opts=opts.LabelOpts(is_show=False)) # 不显示label # 设置全局配置项 map_.set_global_opts(
title_opts=opts.TitleOpts(title="星巴克门店数量在全球分布",
pos_left='40%',
pos_top='10'), # 调整title位置 legend_opts=opts.LegendOpts(is_show=False),
visualmap_opts=opts.VisualMapOpts(
max_=13608,
min_=1,
is_piecewise=True,
pieces=[{"max": 9, "min": 1, "label": "1-9", "color": "#00FFFF"},
{"max": 99, "min": 10, "label": "10-99", "color": "#FF69B4"},
{"max": 499, "min": 100, "label": "100-499", "color": "#0000FF"},
{"max": 999, "min": 500, "label": "500-999", "color": "#00BFFF"},
{"max": 2000, "min": 1000, "label": "1000-2000", "color": "#228B22"},
{"max": 3000, "min": 2000, "label": "2000-3000", "color": "#FF0000"},
{"max": 20000, "min": 10000, "label": ">=10000", "color": "#FFD700"}
] # 分段 添加图例注释和颜色 )
) # 渲染在网页上 有交互性 map_.render('星巴克门店在全球的分布.html')
输出
1、创建实例
Map(init_opts=opts.InitOpts(theme=ThemeType.PURPLE_PASSION))
创建实例并初始化配置。
可配置图表宽度、高度、渲染风格、标题、主题、背景颜色等,详情参见下面连接
https://pyecharts.org/#/zh-cn/global_options?id=initopts:初始化配置项
theme: pyecharts内置提供了10+ 种不同的风格, 参见
https://pyecharts.org/#/zh-cn/themes
2、添加数据
.add()添加了数据。
3、设置系列配置项
.set_series_opts()
https://pyecharts.org/#/zh-cn/series_options
除了在.add()中设置部分配置项外,就是使用.set_series_opts()配置图元样式、文字样式、标签样式、点线样式等。
4、设置全局配置项
.set_global_opts() 配置标题、动画、坐标轴、图例等。
https://pyecharts.org/#/zh-cn/global_options
本实例中:
5、生成的地图以html格式保存
.render()将生成的地图以html格式保存。
Geo 图类型,使用type_: str = "scatter" 参数控制。
有 scatter, effectScatter, heatmap, lines4 种。
from pyecharts.globals import GeoType GeoType.GeoType.EFFECT_SCATTER,GeoType.HEATMAP,GeoType.LINES
1、动态涟漪散点图 effectScatter
V1 版本开始支持链式调用。
数据样例:
import pandas as pd from pyecharts.globals import ThemeType, CurrentConfig, GeoType from pyecharts import options as opts from pyecharts.charts import Geo
CurrentConfig.ONLINE_HOST = 'C:/python/pyecharts-assets-master/assets/' # pandas读取csv文件数据 df = pd.read_csv('directory2.csv', encoding='utf-8')['城市']
data = df.value_counts() #自定义各城市的经纬度 # geo_cities_coords = {df.iloc[i]['城市']:[df.iloc[i]['经度'],df.iloc[i]['纬度']] for i in range(len(df))} datas = [(i, int(j)) for i, j in zip(data.index, data.values)]
print(datas)
geo = (Geo(init_opts=opts.InitOpts(width='1000px',
height='600px',
theme=ThemeType.PURPLE_PASSION),
is_ignore_nonexistent_coord = True)
.add_schema(maptype='china',
label_opts=opts.LabelOpts(is_show=True)) # 显示label 省名 .add('门店数量',
data_pair=datas,
type_=GeoType.EFFECT_SCATTER,
symbol_size=8,
# geo_cities_coords=geo_cities_coords )
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
title_opts=opts.TitleOpts(title='星巴克门店在中国的分布'),
visualmap_opts=opts.VisualMapOpts(max_=550,
is_piecewise=True,
pieces=[
{"max": 50, "min": 0, "label": "0-50", "color": "#708090"},
{"max": 100, "min": 51, "label": "51-100", "color": "#00FFFF"},
{"max": 200, "min": 101, "label": "101-200", "color": "#FF69B4"},
{"max": 400, "min": 201, "label": "201-400", "color": "#FFD700"},
{"max": 800, "min": 600, "label": "600-800", "color": "#FF0000"},])
)
)
geo.render("星巴克门店在中国的分布.html")
输出
Geo新增坐标点# 新增一个坐标点
.add_coordinate(
# 坐标地点名称
name: str,
# 经度
longitude: Numeric,
# 纬度
latitude: Numeric, )
# 新增 json 文件格式的坐标数据
.add_coordinate_json(
# json 文件格式的坐标数据
# 格式如下
# {
# "阿城": [126.58, 45.32],
# "阿克苏": [80.19, 41.09]
# }
json_file: str # 坐标文件路径
)
2、热力图heatmapfrom pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType
CurrentConfig.ONLINE_HOST = 'C:/python/pyecharts-assets-master/assets/'
# pandas读取csv文件数据
df = pd.read_csv('directory2.csv', encoding='utf-8')['城市']
data = df.value_counts()
datas = [(i, int(j)) for i, j in zip(data.index, data.values)]
print(datas)
geo = (
Geo(init_opts=opts.InitOpts(width='1000px',
height='600px',
theme=ThemeType.DARK),
is_ignore_nonexistent_coord=True)
.add_schema(maptype="china") #maptype选择地图种类
.add(series_name="门店数量", # 系列名称
data_pair=datas, # 数据项 (坐标点名称,坐标点值)
blur_size=20,
symbol_size= 5,
type_=ChartType.HEATMAP #类型选为热力图
)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
visualmap_opts=opts.VisualMapOpts(max_=800,is_piecewise=True),
title_opts=opts.TitleOpts(title="星巴克门店在中国的分布热力图"))
)
geo.render( '星巴克门店在中国的分布热力图.html')
输出
3、动态轨迹图lines
pyecharts可以生成地理空间流动图,用来表示航班数量、人口流动等等。
from pyecharts import options as opts from pyecharts.charts import Geo from pyecharts.faker import Faker from pyecharts.globals import ChartType, SymbolType, CurrentConfig import random
datas = [] for _ in range(6):
datas.append(tuple(random.sample(Faker.provinces, 2)))
CurrentConfig.ONLINE_HOST = 'C:/python/pyecharts-assets-master/assets/' geo = (
Geo(init_opts=opts.InitOpts(width='1000px',
height='600px',
theme=ThemeType.CHALK))
.add_schema(
maptype="china",
itemstyle_opts=opts.ItemStyleOpts(color="#323c48", border_color="#111"),
label_opts=opts.LabelOpts(is_show=True)
)
.add(
"",
[list(z) for z in zip(Faker.provinces, Faker.values())],
type_=ChartType.EFFECT_SCATTER,
color="white",
)
.add(
"出差",
data_pair = datas,
type_=ChartType.LINES,
effect_opts=opts.EffectOpts(
symbol=SymbolType.DIAMOND, symbol_size=6, color="blue" ),
linestyle_opts=opts.LineStyleOpts(curve=0.2),
)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(title_opts=opts.TitleOpts(title="动态轨迹图"))
.render("动态轨迹图.html")
)
输出
如果需要再添加一个其他类别的动态轨迹,只需在链式中添加:
.add('旅游',
[('上海','拉萨'),('拉萨','大理'),('大理','成都'),('成都','海口')],
type_=ChartType.LINES,
effect_opts=opts.EffectOpts(
symbol=SymbolType.ARROW, symbol_size=6, color="orange"),
linestyle_opts=opts.LineStyleOpts(curve=0.5)
)
输出如下,可以点击图例来筛选类别。
这边用到两个配置项:
4、三维地图
from pyecharts import options as opts from pyecharts.charts import Map3D from pyecharts.globals import ChartType from pyecharts.commons.utils import JsCode
c = (
Map3D(init_opts=opts.InitOpts(width='1000px',
height='600px',
theme=ThemeType.VINTAGE))
# 地图类型 .add_schema(
itemstyle_opts=opts.ItemStyleOpts( # 图形的颜色 color="#00BFFF", # 或 'rgb(128, 128, 128)' opacity=1, # 图形透明度 border_width=0.8, # 描边宽度 border_color="#708090", # 描边颜色 ),
# Map3D 的 Label 设置 map3d_label=opts.Map3DLabelOpts(
is_show=False,
formatter=JsCode("function(data){return data.name + " " + data.value[2];}"),
),
# 高亮标签配置项 emphasis_label_opts=opts.LabelOpts(
is_show=False,
color="#fff",
font_size=10,
background_color="rgba(0,23,11,0)",
),
# 光照相关的设置。 light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
main_shadow_quality="high",
is_main_shadow=False,
main_beta=10,
ambient_intensity=0.3,
),
)
.add(
series_name="门店数量",
data_pair=datas,
# 叠加图的类型 type_=ChartType.BAR3D,
bar_size=1,
# 三维地图中三维图形的着色效果。 shading="lambert",
label_opts=opts.LabelOpts(
is_show=False,
formatter=JsCode("function(data){return data.name + ' ' + data.value[2];}"),
),
)
.set_global_opts(title_opts=opts.TitleOpts(title="星巴克门店在中国的分布3D图"))
.render("map3d_with_bar3d.html")
)
输出
本例中的主要参数说明:
.add_schema()
地图类型设置,参考pyecharts.datasets.map_filenames.json 文件
.add()
5、Globe地图
数据来源是pyecharts自带的全球人口数据。
import pyecharts.options as opts from pyecharts.charts import MapGlobe from pyecharts.faker import POPULATION from pyecharts.globals import ThemeType
data = [x for _, x in POPULATION[1:]]
low, high = min(data), max(data)
c = (
MapGlobe(init_opts=opts.InitOpts(theme=ThemeType.DARK))
.add_schema()
.add(
maptype="world",
series_name="World Population",
data_pair=POPULATION[1:],
is_map_symbol_show=False,
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(
visualmap_opts=opts.VisualMapOpts(
min_=low,
max_=high,
range_text=["max", "min"],
is_calculable=True,
range_color=["lightskyblue", "yellow", "orangered"],
)
)
.render("map_globe_base.html")
)
输出
本文到此结束,总体来说Pyecharts地图绘图还是比较友好,在不需要多么炫酷的配置前提下,只需要将输入数据格式和类型弄清楚,其余默认配置即可。
对地图样式有一定要求时,只需要根据官网上的配置信息调整全局配置项和系列配置项即可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03