来源:AI入门学习
作者:小伍哥
pandas中的map类似于Python内建的map()方法,pandas中的map()方法将函数、字典索引或是一些需要接受单个输入值的特别的对象与对应的单个列的每一个元素建立联系并串行得到结果。
这里我们想要得到gender列的F、M转换为女性、男性的新列,可以有以下几种实现方式先构造一个数据集
map()函数可以用于Series对象或DataFrame对象的一列,接收函数作为或字典对象作为参数,返回经过函数或字典映射处理后的值。
用法:Series.map(arg, na_action=None)
参数:
arg : function, dict, or Series
Mapping correspondence.
na_action : {None, ‘ignore’}, default None
If ‘ignore’, propagate NaN values, without passing them to the mapping
correspondence.
返回:Pandas Series with same as index as caller
官方:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.map.html
首先构建一个数据集,下面进行案例应用
data = pd.DataFrame( {"name":['Jack', 'Alice', 'Lily', 'Mshis', 'Gdli', 'Agosh', 'Filu', 'Mack', 'Lucy', 'Pony'], "gender":['F', 'M', 'F', 'F', 'M', 'F', 'M', 'M', 'F', 'F'], "age":[25, 34, 49, 42, 28, 23, 45, 21, 34, 29]} ) data name gender age 0 Jack F 25 1 Alice M 34 2 Lily F 49 3 Mshis F 42 4 Gdli M 28 5 Agosh F 23 6 Filu M 45 7 Mack M 21 8 Lucy F 34 9 Pony F 29
这里我们编写F、M与女性、男性之间一一映射的字典,再利用map()方法来得到映射列:
#定义F->女性,M->男性的映射字典 gender2xb = {'F': '女性', 'M': '男性'} #利用map()方法得到对应gender列的映射列 data.gender.map(gender2xb) 0 女性 1 男性 2 女性 3 女性 4 男性 5 女性 6 男性 7 男性 8 女性 9 女性
这里我们向map()中传入lambda函数来实现所需功能:
#因为已经知道数据gender列性别中只有F和M所以编写如下lambda函数
data.gender.map(lambda x:'女性' if x == 'F' else '男性') 0 女性 1 男性 2 女性 3 女性 4 男性 5 女性 6 男性 7 男性 8 女性 9 女性 #年龄的平方 data.age.map(lambda x: x**2) 0 625 1 1156 2 2401 3 1764 4 784 5 529 6 2025 7 441 8 1156 9 84
map函数,也可以传入通过def定义的常规函数,看看下面的案例
#性别转换 def gender_to_xb(x): return '女性' if x == 'F' else '男性' data.gender.map(gender_to_xb) 0 女性 1 男性 2 女性 3 女性 4 男性 5 女性 6 男性 7 男性 8 女性 9 女性
map()可以传入的内容有时候可以很特殊,如下面的例子:一些接收单个输入值且有输出的对象也可以用map()方法来处理:
data.gender.map("This kid's gender is {}".format) 0 This kid's gender is F 1 This kid's gender is M 2 This kid's gender is F 3 This kid's gender is F 4 This kid's gender is M 5 This kid's gender is F 6 This kid's gender is M 7 This kid's gender is M 8 This kid's gender is F 9 This kid's gender is F
map()中的参数na_action,类似R中的na.action,取值为None或ingore,用于控制遇到缺失值的处理方式,设置为ingore时串行运算过程中将忽略Nan值原样返回。
s = pd.Series(['cat', 'dog', np.nan, 'rabbit']) s 0 cat 1 dog 2 NaN 3 rabbit
na_action为默认值的情况
s.map('I am a {}'.format) 0 I am a cat 1 I am a dog 2 I am a nan 3 I am a rabbit
na_action为ignore的情况
s.map('I am a {}'.format, na_action='ignore')0 I am a cat1 I am a dog2 NaN3 I am a rabbit
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19