京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:Python爬虫与数据挖掘
作者:Python进阶者
大家好,我是Python进阶者。
作为非关系数据库的代表--Mongo,可以说是让人又爱又恨,让人爱的是它的便捷性,让人恨的是它的配置,实在是坑多。那么今天我们就来深入剖析它吧。
pip install pymongo from pymongo import MongoClient
1.普通登录,又称游客登陆,安全等级低
MongoClient('mongodb://localhost:27017/')
2.用户密码登陆,安全等级高
MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
这里连接到了用户名为hwzjj,密码为123456的用户。
为了安全,我们使用用户名和密码登陆,然后创建一个集合,不知道大家对Mongo创建集合还有没有印象,反正小编还有,废话不多说,先创建两个集合。
db.createCollection(name='student',option={capped:true,autoIndexId:true,size:100,max:1000}) db.createCollection(name='teacher',option={capped:true,autoIndexId:true,size:200,max:2000})
这样就创建了一student和teacher的集合了。然后我们再来显示一下所有的集合名:
show collections;
然后我们往集合里插入数据,在Mongo中是这样插入的:
可以看到我们成功插入了两条数据,接下来我们利用Python来插入数据。
1.直接使用创建好的集合插入数据
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw') 连接数据库
db=client['hw'] 选择数据库hw
coll=db['student'] 选择集合
res={'id':'0003','name':'任性','age':43}
first=coll.insert_one(res) 将数据插入到集合中 print(first.inserted_id) 打印插入数据的id(每个插入数据都会有)
2.自己创建集合插入数据
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
db=client['hw']
db.create_collection('teacher') 创建集合
res={'id':'0001','name':'boy','age':36}
last=db.student.insert_one(res) 插入数据 print(last.inserted_id) 打印id
3.插入多条数据
import random
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
db=client['hw']
coll=db['student'] def get(): for y in range(100000):
data={'id':y,'name':'user--'+str(y),'age':random.choice(range(100))} yield data for y in get():
coll.insert(y)
同样是插入十万个数据, 不过数据却是比Mysql慢一点,可自行测试。
注:执行插入操作时,Insert最多可插入四条同样的记录。
仍旧是先要获取集合,然后对集合中的内容进行修改。
1.更新匹配到的第一条数据
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
db=client['hw']
coll=db['student']
coll.update_one({'name':'user--10'},{'$set':{'name':'用户已注销'}}) 更新匹配到的第一条数据
2.更新匹配到的所有数据
我们创建四个一样的数据,将程序执行四次即可:
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
db=client['hw']
coll=db['student']
coll.insert({'id':'111','name':'hw','age':43})
可以看到生成了四个同样的记录,当然了,只能生成最多4条记录。然后我们全部将它们数据修改。
coll.update({'name':'hw'},{'$set':{'name':'用户已注册'}})
1.删除所有符合条件的数据
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
db=client['hw']
coll=db['student']
coll.insert({'id':'111','name':'hw','age':43}) 插入数据
coll.remove({'name':'hw'}) 删除所有name 为hw的数据,注意不要以id为条件来删除,会报错
coll.delete_many({'name':'hw'}) 跟上者功能一样
2.删除所有符合条件的第一条数据
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
db=client['hw']
coll=db['student']
coll.insert({'id':'111','name':'hw','age':43})
coll.delete_one({'name':'hw'}) 删除符合条件的第一条数据
1.查询符合条件的第一条数据
2.查询符合条件的所有数据
3.查找后删除
4.查找后替换
5.查找后更新
6.统计符合条件的记录数量
coll.find().count() # 记录符合条件的数量
7.符合条件的数据的排序
coll.find().sort('name', pymongo.ASCENDING) # 升序排序 DESCENDING 降序排序
8.符合条件数量中跳过
coll.find().sort('name', pymongo.ASCENDING).skip(1) # 跳过一个记录
9.限制符合条件输出数量
coll.find().sort('name', pymongo.ASCENDING).limit(2) # 输出两个符合条件的记录
10.通过Id来查找
每个插入的数据都会生成一个id,貌似被加密了,前面我们已经和它打过交道了,下面来看下它的使用。
from bson.objectid import ObjectId
find_one({'_id': ObjectId(id_name)})
1.创建索引
可以看到有两个索引,一个是Mongo自动创建的在id上的索引,另一个是刚刚创建在name上的索引。
2.获取索引
for y in coll.list_indexes(): # 获取所有索引 print(y)
3.删除索引
可以看到刚刚的索引name已经被删除了,而且只有一条数据了,那么有人就问了,为何不把_id一起删除,很抱歉,这个是删不了的。
通过本章对Pymongo的学习,相信你已经可以胜任日常一些开发了,Pymongo中还有很多值得学习的地方,值得你去推敲,在这里就不一一列举了,希望本文能带大家零基础毫无压力入门Pymongo。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23