
来源:Python爬虫与数据挖掘
作者:Python进阶者
大家好,我是Python进阶者。
作为非关系数据库的代表--Mongo,可以说是让人又爱又恨,让人爱的是它的便捷性,让人恨的是它的配置,实在是坑多。那么今天我们就来深入剖析它吧。
pip install pymongo from pymongo import MongoClient
1.普通登录,又称游客登陆,安全等级低
MongoClient('mongodb://localhost:27017/')
2.用户密码登陆,安全等级高
MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
这里连接到了用户名为hwzjj,密码为123456的用户。
为了安全,我们使用用户名和密码登陆,然后创建一个集合,不知道大家对Mongo创建集合还有没有印象,反正小编还有,废话不多说,先创建两个集合。
db.createCollection(name='student',option={capped:true,autoIndexId:true,size:100,max:1000}) db.createCollection(name='teacher',option={capped:true,autoIndexId:true,size:200,max:2000})
这样就创建了一student和teacher的集合了。然后我们再来显示一下所有的集合名:
show collections;
然后我们往集合里插入数据,在Mongo中是这样插入的:
可以看到我们成功插入了两条数据,接下来我们利用Python来插入数据。
1.直接使用创建好的集合插入数据
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw') 连接数据库
db=client['hw'] 选择数据库hw
coll=db['student'] 选择集合
res={'id':'0003','name':'任性','age':43}
first=coll.insert_one(res) 将数据插入到集合中 print(first.inserted_id) 打印插入数据的id(每个插入数据都会有)
2.自己创建集合插入数据
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
db=client['hw']
db.create_collection('teacher') 创建集合
res={'id':'0001','name':'boy','age':36}
last=db.student.insert_one(res) 插入数据 print(last.inserted_id) 打印id
3.插入多条数据
import random
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
db=client['hw']
coll=db['student'] def get(): for y in range(100000):
data={'id':y,'name':'user--'+str(y),'age':random.choice(range(100))} yield data for y in get():
coll.insert(y)
同样是插入十万个数据, 不过数据却是比Mysql慢一点,可自行测试。
注:执行插入操作时,Insert最多可插入四条同样的记录。
仍旧是先要获取集合,然后对集合中的内容进行修改。
1.更新匹配到的第一条数据
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
db=client['hw']
coll=db['student']
coll.update_one({'name':'user--10'},{'$set':{'name':'用户已注销'}}) 更新匹配到的第一条数据
2.更新匹配到的所有数据
我们创建四个一样的数据,将程序执行四次即可:
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
db=client['hw']
coll=db['student']
coll.insert({'id':'111','name':'hw','age':43})
可以看到生成了四个同样的记录,当然了,只能生成最多4条记录。然后我们全部将它们数据修改。
coll.update({'name':'hw'},{'$set':{'name':'用户已注册'}})
1.删除所有符合条件的数据
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
db=client['hw']
coll=db['student']
coll.insert({'id':'111','name':'hw','age':43}) 插入数据
coll.remove({'name':'hw'}) 删除所有name 为hw的数据,注意不要以id为条件来删除,会报错
coll.delete_many({'name':'hw'}) 跟上者功能一样
2.删除所有符合条件的第一条数据
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
db=client['hw']
coll=db['student']
coll.insert({'id':'111','name':'hw','age':43})
coll.delete_one({'name':'hw'}) 删除符合条件的第一条数据
1.查询符合条件的第一条数据
2.查询符合条件的所有数据
3.查找后删除
4.查找后替换
5.查找后更新
6.统计符合条件的记录数量
coll.find().count() # 记录符合条件的数量
7.符合条件的数据的排序
coll.find().sort('name', pymongo.ASCENDING) # 升序排序 DESCENDING 降序排序
8.符合条件数量中跳过
coll.find().sort('name', pymongo.ASCENDING).skip(1) # 跳过一个记录
9.限制符合条件输出数量
coll.find().sort('name', pymongo.ASCENDING).limit(2) # 输出两个符合条件的记录
10.通过Id来查找
每个插入的数据都会生成一个id,貌似被加密了,前面我们已经和它打过交道了,下面来看下它的使用。
from bson.objectid import ObjectId
find_one({'_id': ObjectId(id_name)})
1.创建索引
可以看到有两个索引,一个是Mongo自动创建的在id上的索引,另一个是刚刚创建在name上的索引。
2.获取索引
for y in coll.list_indexes(): # 获取所有索引 print(y)
3.删除索引
可以看到刚刚的索引name已经被删除了,而且只有一条数据了,那么有人就问了,为何不把_id一起删除,很抱歉,这个是删不了的。
通过本章对Pymongo的学习,相信你已经可以胜任日常一些开发了,Pymongo中还有很多值得学习的地方,值得你去推敲,在这里就不一一列举了,希望本文能带大家零基础毫无压力入门Pymongo。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03