京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:丁点帮你
作者:丁点helper
之前的文章讲了如何用R绘制箱形图,以此来帮助我们了解数据的整体分布情况、是否存在异常值。除此之外,箱形图还可以进行数据的组间比较。
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
本次我们用到的是学生的课堂调查数据,包括了性别、年级、专业、身高、最喜欢的动物(讲数据清理时用的是这个变量,还记得吗)等变量。数据名:survey.csv,数据链接:
首先导入数据,存入survey这个数据集中:
survey <- read.csv("//Users//Desktop//survey.csv",
header = TRUE) # 获取数据中包含的变量名 names(survey)
[1] "ClassProb" "Status" "Year" "Division" "Gender" "HtCm" "Hand" "Haircut" "Exercise" [10] "Coursework" "Web" "TV" "Social" "Econ" "Animal" "Friends" "Pulse"
接下来我们以Gender作为分组依据,先来看看这个变量的情况。
table(survey$Gender) Choose not to answer Female Gender non-conforming Male 1 1 117 1 118
我们发现,除了female和male,有的同学回答了Choose not to answer,Gender non-conforming,还有同学什么都没填,空缺。
今天我们暂时将这三种特殊情况从数据中删去。
# 查看针对Gender这个变量,同学们有几类回答 levels(survey$Gender)
[1] "" "Choose not to answer" "Female" "Gender non-conforming" "Male"
在这五类回答中,我们想保留的是第3、第5类。也就是说,仅保留Gender为"Female" 或 "Male"的记录。
# 把更新后的数据存储在survey2这个对象中 survey2 <- survey[survey$Gender %in% levels(survey$Gender)[c(3,5)],]
这里,a %in%b的作用是,用a中的元素去匹配b中的任意元素,如果匹配成功,则返回结果为TRUE,反之,则结果为FALSE。
此时,上面的语句就简化为如下所示,c()里面是TRUE和FALSE的集合,是a中每个元素与b匹配的结果。
survey2 <- survey[c(),] # 这是为了便于理解写的简化语句,不能够运行的
survey2中仅保留了匹配结果为TRUE的记录:
table(survey2$Gender) Choose not to answer Female Gender non-conforming Male 0 0 117 0 118
哎?虽然记录被删了,但Gender中之前包含的五个类都还在,用下面的droplevels()这个函数删掉那些没有记录的类。
survey2$Gender <- droplevels(survey2$Gender)
table(survey2$Gender)
Female Male
117 118
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
数据清理好之后,我们以身高HtCm这个变量为例,先用之前讲过的方法绘制箱形图,了解改变量的整体分布,然后对比性别之间的身高差异。
boxplot(survey2$HtCm, main="Boxplot of Ht in cm", col='orange', lwd=2)
一目了然,我们调查的是大学学生,却出现了身高小于100厘米的情况,不符合常理。现在去检查一下原始数据。
sort(survey2$HtCm) # 将身高从小到大排序
部分结果截图
实际操作中,大家要尽量核实那些极端身高数据的真实情况,修正数据。这里我们为便于教学,直接把那些小于100厘米的身高值记录为缺失。
然后利用整理后的身高数据绘制箱形图。
survey2$HtCm[survey2$HtCm < 100 ] <- NA
boxplot(survey2$HtCm, main="Boxplot of Ht in cm",
col='orange', lwd=2)
最后绘制不同性别学生的身高箱形图。
boxplot(survey2$HtCm~survey2$Gender,
main="Boxplot of Ht in cm",
col=c(2,3), lwd=2)
由图可知,男生的身高基本都高于女生。将两个箱形图放在一起,可以清晰地看到两组变量的大致情况,便于给两组做粗略的比较。
但是这男女生身高到底有没有统计学上的差异,肉眼是很难得出结论的,统计学上怎么做呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11