来源:丁点帮你
作者:丁点helper
之前的文章讲了如何用R绘制箱形图,以此来帮助我们了解数据的整体分布情况、是否存在异常值。除此之外,箱形图还可以进行数据的组间比较。
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
本次我们用到的是学生的课堂调查数据,包括了性别、年级、专业、身高、最喜欢的动物(讲数据清理时用的是这个变量,还记得吗)等变量。数据名:survey.csv,数据链接:
首先导入数据,存入survey这个数据集中:
survey <- read.csv("//Users//Desktop//survey.csv",
header = TRUE) # 获取数据中包含的变量名 names(survey)
[1] "ClassProb" "Status" "Year" "Division" "Gender" "HtCm" "Hand" "Haircut" "Exercise" [10] "Coursework" "Web" "TV" "Social" "Econ" "Animal" "Friends" "Pulse"
接下来我们以Gender作为分组依据,先来看看这个变量的情况。
table(survey$Gender) Choose not to answer Female Gender non-conforming Male 1 1 117 1 118
我们发现,除了female和male,有的同学回答了Choose not to answer,Gender non-conforming,还有同学什么都没填,空缺。
今天我们暂时将这三种特殊情况从数据中删去。
# 查看针对Gender这个变量,同学们有几类回答 levels(survey$Gender)
[1] "" "Choose not to answer" "Female" "Gender non-conforming" "Male"
在这五类回答中,我们想保留的是第3、第5类。也就是说,仅保留Gender为"Female" 或 "Male"的记录。
# 把更新后的数据存储在survey2这个对象中 survey2 <- survey[survey$Gender %in% levels(survey$Gender)[c(3,5)],]
这里,a %in%b的作用是,用a中的元素去匹配b中的任意元素,如果匹配成功,则返回结果为TRUE,反之,则结果为FALSE。
此时,上面的语句就简化为如下所示,c()里面是TRUE和FALSE的集合,是a中每个元素与b匹配的结果。
survey2 <- survey[c(),] # 这是为了便于理解写的简化语句,不能够运行的
survey2中仅保留了匹配结果为TRUE的记录:
table(survey2$Gender) Choose not to answer Female Gender non-conforming Male 0 0 117 0 118
哎?虽然记录被删了,但Gender中之前包含的五个类都还在,用下面的droplevels()这个函数删掉那些没有记录的类。
survey2$Gender <- droplevels(survey2$Gender)
table(survey2$Gender)
Female Male
117 118
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
数据清理好之后,我们以身高HtCm这个变量为例,先用之前讲过的方法绘制箱形图,了解改变量的整体分布,然后对比性别之间的身高差异。
boxplot(survey2$HtCm, main="Boxplot of Ht in cm", col='orange', lwd=2)
一目了然,我们调查的是大学学生,却出现了身高小于100厘米的情况,不符合常理。现在去检查一下原始数据。
sort(survey2$HtCm) # 将身高从小到大排序
部分结果截图
实际操作中,大家要尽量核实那些极端身高数据的真实情况,修正数据。这里我们为便于教学,直接把那些小于100厘米的身高值记录为缺失。
然后利用整理后的身高数据绘制箱形图。
survey2$HtCm[survey2$HtCm < 100 ] <- NA
boxplot(survey2$HtCm, main="Boxplot of Ht in cm",
col='orange', lwd=2)
最后绘制不同性别学生的身高箱形图。
boxplot(survey2$HtCm~survey2$Gender,
main="Boxplot of Ht in cm",
col=c(2,3), lwd=2)
由图可知,男生的身高基本都高于女生。将两个箱形图放在一起,可以清晰地看到两组变量的大致情况,便于给两组做粗略的比较。
但是这男女生身高到底有没有统计学上的差异,肉眼是很难得出结论的,统计学上怎么做呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10