
CDA数据分析师 出品
导读:本文主要介绍SQL环境下的关联子查询,如何理解关联子查询,以及如何使用关联子查询解决组内筛选的问题。
关联子查询是指和外部查询有关联的子查询,具体来说就是在这个子查询里使用了外部查询包含的列。
因为这种可以使用关联列的灵活性,将SQL查询写成子查询的形式往往可以极大的简化SQL语句,也使得SQL查询语句更方便理解。
在关联子查询中,对于外部查询返回的每一行数据,内部查询都要执行一次。另外,在关联子查询中是信息流是双向的。外部查询的每行数据传递一个值给子查询,然后子查询为每一行数据执行一次并返回它的记录。然后,外部查询根据返回的记录做出决策。
关联子查询主要分为三步进行处理:
1、外部查询得到一条记录并传递到内部查询中;
2、内部查询基于输入值执行,并将返回值传递到外部查询中;
3、外部查询基于这个返回值再进行查询,并做出决策。
在普通子查询中,执行顺序是由内到外,先执行内部查询再执行外部查询。内部查询的执行不依赖于外部查询,且内部查询只处理一次,外部查询基于内部查询返回值再进行查询,就查询完毕了。
而在关联子查询中,信息传播是双向而不是单向的。内部查询利用关联子查询涉及外部查询提供的信息,外部查询也会根据内部查询返回的记录进行决策。内部查询的执行依赖于外部查询,不能单独执行。
应用场景
在细分的组内进行比较时,需要使用关联子查询。
比如查询三门课程分数相同的学生,需要将各科考试成绩的记录按照学生进行分组,同一个学生的三科成绩分为一组,对组内的三科成绩进行比较是否相同,来筛选满足条件的学生。
再比如查询价格低于该品类平均价格的商品,需要将各品类的商品信息按照品类进行分组,同一个品类的商品记录分为一个组,对组内的多个商品计算平均价格,来筛选满足条件的商品。
例题精讲
员工表的表结构如下:
表中数据如下:
要解决的问题:
查询工资高于同职位的平均工资的员工信息
普通子查询的做法
遇到此类问题,首先想到的思路是对职位分组,这样就能分别得到各个职位的平均工资,再比较每个员工的工资与其对应职位的平均工资,大于则被筛选出来。
因此,第一步:分组统计各职位的平均工资
第二步:比较每个员工的工资与其对应职位的平均工资
因为子查询返回结果是5行,因此这段代码根本无法执行。
关联子查询的做法
通过设置表别名的方法,将一个表虚拟成两个表进行自连接,并且使用关联子查询,内部查询返回的结果,传递给外部查询进行比较筛选。
这段代码的执行步骤如下:
第一步:先执行外部查询,select* from emp e也就是遍历表中的每一条记录,而因为子查询中用到了自连接(where job=e.job),所以将外部查询的第一条记录,也就是
传递给子查询。
第二步:进入子查询后,传递给子查询的这条记录的job是clerk,子查询执行select avg(sal) from empwhere job=e.job 时,就会筛选出所有job='clerk'的员工,计算出平均工资。相当于执行了
将这个计算值传递给外部查询。
第三步:外部查询基于1037.5进行筛选,找出同职位工资高于1037.5的员工。相当于执行了
循环执行:
第一步:执行外部查询,即select* from emp e将外部查询的第二条记录,也就是
传递给子查询。
第二步:进入子查询后,传递给子查询的这条记录的job是salesman,子查询执行select avg(sal) from empwhere job=e.job时,就会筛选出所有job='salesman'的员工,计算出平均工资。相当于执行了
将这个计算值传递给外部查询。
第三步:外部查询基于1400进行筛选,找出同职位工资高于1400的员工。相当于执行了
继续循环直到表中的最后一条记录,最终返回满足条件的员工信息。
总结
普通子查询的内部查询独立于外部查询,可以单独执行,但子查询仅执行一次,外部查询基于返回值再进行查询和筛选,整个查询过程就结束了。
在关联子查询中,内部查询依赖于外部查询,不能单独执行。外部查询执行一次并传递一条记录给子查询,子查询就要执行一次并将返回值传递给外部查询,外部查询再执行筛选并决策,如此循环直到表中最后一条记录。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13