作者:闲欢
来源:Python 技术
今天在浏览知乎时,发现一个有趣的问题:
如何优化 Python 爬虫的速度?
他的问题描述是:
目前在写一个 Python 爬虫,单线程 urllib 感觉过于慢了,达不到数据量的要求(十万级页面)。求问有哪些可以提高爬取效率的方法?
这个问题还蛮多人关注的,但是回答的人却不多。
我今天就来尝试着回答一下这个问题。
程序提速这个问题其实解决方案就摆在那里,要么通过并发来提高单位时间内处理的工作量,要么从程序本身去找提效点,比如爬取的数据用gzip传输、提高处理数据的速度等。
我会分别从几种常见的并发方法去做同一件事情,从而比较处理效率。
我们先来一个简单的爬虫,看看单线程处理会花费多少时间?
import time import requests from datetime import datetime def fetch(url): r = requests.get(url)
print(r.text)
start = datetime.now()
t1 = time.time() for i in range(100):
fetch('http://httpbin.org/get')
print('requests版爬虫耗时:', time.time() - t1) # requests版爬虫耗时:54.86306357383728
我们用一个爬虫的测试网站,测试爬取100次,用时是54.86秒。
下面我们将上面的程序改为多线程版本:
import threading import time import requests
def fetch():
r = requests.get('http://httpbin.org/get') print(r.text)
t1 = time.time()
t_list = [] for i in range(100):
t = threading.Thread(target=fetch, args=())
t_list.append(t)
t.start() for t in t_list:
t.join() print("多线程版爬虫耗时:", time.time() - t1)
# 多线程版爬虫耗时:0.8038511276245117
我们可以看到,用上多线程之后,速度提高了68倍。其实用这种方式的话,由于我们并发操作,所以跑100次跟跑一次的时间基本是一致的。这只是一个简单的例子,实际情况中我们不可能无限制地增加线程数。
除了多线程之外,我们还可以使用多进程来提高爬虫速度:
import requests import time import multiprocessing from multiprocessing import Pool
MAX_WORKER_NUM = multiprocessing.cpu_count() def fetch(): r = requests.get('http://httpbin.org/get')
print(r.text) if __name__ == '__main__':
t1 = time.time()
p = Pool(MAX_WORKER_NUM) for i in range(100):
p.apply_async(fetch, args=())
p.close()
p.join()
print('多进程爬虫耗时:', time.time() - t1)
多进程爬虫耗时: 7.9846765995025635
我们可以看到多进程处理的时间是多线程的10倍,比单线程版本快7倍。
我们将程序改为使用 aiohttp 来实现,看看效率如何:
import aiohttp import asyncio import time async def fetch(client): async with client.get('http://httpbin.org/get') as resp: assert resp.status == 200 return await resp.text() async def main(): async with aiohttp.ClientSession() as client:
html = await fetch(client)
print(html)
loop = asyncio.get_event_loop()
tasks = [] for i in range(100):
task = loop.create_task(main())
tasks.append(task)
t1 = time.time()
loop.run_until_complete(main())
print("aiohttp版爬虫耗时:", time.time() - t1)
aiohttp版爬虫耗时: 0.6133313179016113
我们可以看到使用这种方式实现,比单线程版本快90倍,比多线程还快。
通过上面的程序对比,我们可以看到,对于多任务爬虫来说,多线程、多进程、协程这几种方式处理效率的排序为:aiohttp > 多线程 > 多进程。因此,对于简单的爬虫任务,如果想要提高效率,可以考虑使用协程。但是同时也要注意,这里只是简单的示例,实际运用中,我们一般会用线程池、进程池、协程池去操作。
这就是问题的答案了吗?
对于一个严谨的程序员来说,当然不是,实际上还有一些优化的库,例如grequests,可以从请求上解决并发问题。实际的处理过程中,肯定还有其他的优化点,这里只是从最常见的几种并发方式去比较而已,应付简单爬虫还是可以的,其他的方式欢迎大家在评论区留言探讨。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26