京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:闲欢
来源:Python 技术
今天在浏览知乎时,发现一个有趣的问题:
如何优化 Python 爬虫的速度?
他的问题描述是:
目前在写一个 Python 爬虫,单线程 urllib 感觉过于慢了,达不到数据量的要求(十万级页面)。求问有哪些可以提高爬取效率的方法?
这个问题还蛮多人关注的,但是回答的人却不多。
我今天就来尝试着回答一下这个问题。
程序提速这个问题其实解决方案就摆在那里,要么通过并发来提高单位时间内处理的工作量,要么从程序本身去找提效点,比如爬取的数据用gzip传输、提高处理数据的速度等。
我会分别从几种常见的并发方法去做同一件事情,从而比较处理效率。
我们先来一个简单的爬虫,看看单线程处理会花费多少时间?
import time import requests from datetime import datetime def fetch(url): r = requests.get(url)
print(r.text)
start = datetime.now()
t1 = time.time() for i in range(100):
fetch('http://httpbin.org/get')
print('requests版爬虫耗时:', time.time() - t1) # requests版爬虫耗时:54.86306357383728
我们用一个爬虫的测试网站,测试爬取100次,用时是54.86秒。
下面我们将上面的程序改为多线程版本:
import threading import time import requests
def fetch():
r = requests.get('http://httpbin.org/get') print(r.text)
t1 = time.time()
t_list = [] for i in range(100):
t = threading.Thread(target=fetch, args=())
t_list.append(t)
t.start() for t in t_list:
t.join() print("多线程版爬虫耗时:", time.time() - t1)
# 多线程版爬虫耗时:0.8038511276245117
我们可以看到,用上多线程之后,速度提高了68倍。其实用这种方式的话,由于我们并发操作,所以跑100次跟跑一次的时间基本是一致的。这只是一个简单的例子,实际情况中我们不可能无限制地增加线程数。
除了多线程之外,我们还可以使用多进程来提高爬虫速度:
import requests import time import multiprocessing from multiprocessing import Pool
MAX_WORKER_NUM = multiprocessing.cpu_count() def fetch(): r = requests.get('http://httpbin.org/get')
print(r.text) if __name__ == '__main__':
t1 = time.time()
p = Pool(MAX_WORKER_NUM) for i in range(100):
p.apply_async(fetch, args=())
p.close()
p.join()
print('多进程爬虫耗时:', time.time() - t1)
多进程爬虫耗时: 7.9846765995025635
我们可以看到多进程处理的时间是多线程的10倍,比单线程版本快7倍。
我们将程序改为使用 aiohttp 来实现,看看效率如何:
import aiohttp import asyncio import time async def fetch(client): async with client.get('http://httpbin.org/get') as resp: assert resp.status == 200 return await resp.text() async def main(): async with aiohttp.ClientSession() as client:
html = await fetch(client)
print(html)
loop = asyncio.get_event_loop()
tasks = [] for i in range(100):
task = loop.create_task(main())
tasks.append(task)
t1 = time.time()
loop.run_until_complete(main())
print("aiohttp版爬虫耗时:", time.time() - t1)
aiohttp版爬虫耗时: 0.6133313179016113
我们可以看到使用这种方式实现,比单线程版本快90倍,比多线程还快。
通过上面的程序对比,我们可以看到,对于多任务爬虫来说,多线程、多进程、协程这几种方式处理效率的排序为:aiohttp > 多线程 > 多进程。因此,对于简单的爬虫任务,如果想要提高效率,可以考虑使用协程。但是同时也要注意,这里只是简单的示例,实际运用中,我们一般会用线程池、进程池、协程池去操作。
这就是问题的答案了吗?
对于一个严谨的程序员来说,当然不是,实际上还有一些优化的库,例如grequests,可以从请求上解决并发问题。实际的处理过程中,肯定还有其他的优化点,这里只是从最常见的几种并发方式去比较而已,应付简单爬虫还是可以的,其他的方式欢迎大家在评论区留言探讨。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11