CDA数据分析师 出品
作者:曹鑫
我知道,一说到数字经济,数字化转型,数字化人才,你第一感觉就是:跟我有半毛钱关系。诶,不要着急!
至少 Excel 你天天在用吧?只不过你可能用的最多的就是复制粘贴记录一下数据。你不要怀疑,这高低、左右,都算是数字化技能!因为数字化技能的核心就是数据能力,而且数据能力贯穿着公司业务全流程的每个环节,这也是为什么说,数字经济时代的新生产资料是数据!看看这张数据能力图,分成四个层面:需求层、数据层、分析层、输出层;第一层是需求层,是目标确定的过程,对整个业务进行拆解,为数据工作指明方向;第二层是数据层,包含数据获取、数据清洗、数据整;第三层是分析层,包含描述性统计制图、业务根因分析,这里就涉及到专业的算法;第四层是输出层,面向管理层、决策层、执行层,给出不同的数据报告、业务仪表盘、落地模型等。
今天遇到一个任务是「财务对账」。
对账,可以说是财务最常做的一个工作,也是基础工作之一。就算你们公司的系统已经非常完整了,你还是会遇到两个表要核对差异在哪里的情况。你会怎么做?
当数据量不大的时候,我们最简单的做法,也是最符合第一直觉的做法,把两张表放到一起,一左一右,左边有个268,右边有个268,这就对上了;左边有个20.1,右边没找到20.1,这就是多记了,但是右边有个21,所以也有可能是错记了;左边有个100,右边也有个100,左边还有个100,右边没有100了,那这里可能是多记了。剩下右边还有个8,那这就是左边漏记了,这样就把不同情况都分析出来了。
但如果数据量大了,几百上千行,甚至几万行,这个方法就有点累了,比如我们现在有的两张数据表,一份公司银行存款明细账和一份银行流水,我们需要将公司银行存款明细中的借方与银行流水的收款金额进行核对。别说几百上千行了,光看这个100多行,我就觉得看着累。
如果用 Python 来做,效率就会大大提升。我们先看看Python实现的逻辑,还是之前的例子:我们要看数据有没有重复,就是统计每个数据在两个表分别出现的次数,然后两个表中的个数相减。
知道了逻辑,我们就可以来操作了。先看看效果,就是这30多行代码,作为新人,你别怕,我们先看看有多爽!
import pandas as pd
# 读取公司明细账
df_gs = pd.read_excel('./对账数据/公司银行存款明细账.xlsx',header=1)
# 读取银行流水
df_yh = pd.read_excel('./对账数据/银行流水.xlsx',header=1)
df_gs_jie = df_gs[['凭证号','借方']] df_gs_jie = df_gs_jie.rename(columns={'借方':'金额'})
df_yh_shou = df_yh[['收款金额','对方户名']] df_yh_shou = df_yh_shou.rename(columns={'收款金额':'金额'})
# 将两张表的借方-收款拼接
mergedStuff_jie_shou= df_gs_jie.append(df_yh_shou)
mergedStuff_jie_shou = mergedStuff_jie_shou[mergedStuff_jie_shou['金额'] != 0]
df_count = mergedStuff_jie_shou.groupby(by='金额').count()
# 判断金额出现的次数
df_count['重复次数'] = df_count['凭证号'] - df_count['对方户名']
# 重复次数不为0,就是没有对上
df_result = df_count[df_count['重复次数'] != 0].copy()
# 判断错误问题
df_result['错误原因'] = df_result.apply(lambda x: '漏记' if x['重复次数']< 0 else ('重复记录/多记' if x['重复次数'] > 1 else '多记/错记'), axis=1) print('借方-收款出现的错误')
df_result[['错误原因']]
# 列出两张表中具体的行 # 公司银行存款明细账中的多记/错记 df_gs[df_gs['借方'] == 1.00]
# 银行流水中的漏记 df_yh[(df_yh['收款金额'] == 637146.52) |
(df_yh['收款金额'] == 27023289.88) ]
读取两张 Excel 表的数据
import pandas as pd # 读取公司明细账 df_gs = pd.read_excel('./对账数据/公司银行存款明细账.xlsx',header=1)
df_gs.head()
# 读取银行流水 df_yh = pd.read_excel('./对账数据/银行流水.xlsx',header=1)
df_yh.head()
数据清洗:修改列名
df_gs_jie = df_gs[['凭证号','借方']] df_gs_jie = df_gs_jie.rename(columns={'借方':'金额'})
df_gs_jie.head()
df_yh_shou = df_yh[['收款金额','对方户名']] df_yh_shou = df_yh_shou.rename(columns={'收款金额':'金额'})
df_yh_shou.head()
拼接两张表
# 将两张表的借方-收款拼接 mergedStuff_jie_shou= df_gs_jie.append(df_yh_shou)
mergedStuff_jie_shou = mergedStuff_jie_shou[mergedStuff_jie_shou['金额'] != 0] # 剔除金额为 0 的行 mergedStuff_jie_shou
根据金额进行统计
df_count = mergedStuff_jie_shou.groupby(by='金额').count()
df_count
# 判断金额出现的次数 df_count['重复次数'] = df_count['凭证号'] - df_count['对方户名']
df_count
# 重复次数不为0,就是没有对上 df_result = df_count[df_count['重复次数'] != 0].copy()
df_result
# 判断错误问题
df_result['错误原因'] = df_result.apply(lambda x: '漏记' if x['重复次数']< 0 else ('重复记录/多记' if x['重复次数'] > 1 else '多记/错记'), axis=1) print('借方-收款出现的错误')
df_result[['错误原因']]
# 多记/错记 df_gs[df_gs['借方'] == 1.00]
# 漏记 df_yh[(df_yh['收款金额'] == 637146.52) |
(df_yh['收款金额'] == 27023289.88) ]
未来,你只要修改好需要读取的表,确定需要比对的列,然后一键运行,结果一瞬间就出来了,而且你之后每个月,每周,甚至每天要比对的时候,你只需要确定好你要比对的表,比对的数据列,就可以快速得到结果,代码复用效率极高。你还可以进一步查看各自表中具体行的数据,方便你具体判断。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14