作者:俊欣
来源:关于数据分析与可视化
今天小编来给大家介绍一下如何在Pyecharts当中画出炫酷的图表,通过该模块当中的一系列设置,本文我们大致会介绍pyecharts当中的
Pyecharts模块内部内置了10多种不同风格的图表绘制样式,分别是
LIGHT = "light" DARK = "dark" WHITE = "white" CHALK: str = "chalk" ESSOS: str = "essos" INFOGRAPHIC: str = "infographic" MACARONS: str = "macarons" PURPLE_PASSION: str = "purple-passion" ROMA: str = "roma" ROMANTIC: str = "romantic" SHINE: str = "shine" VINTAGE: str = "vintage" WALDEN: str = "walden" WESTEROS: str = "westeros" WONDERLAND: str = "wonderland" HALLOWEEN: str = "halloween"
我们依次来看一下每一种风格出来的样子,这次我们用到的数据集依然是Pyecharts模块当中内置的模块,当然我们首先需要导入相对应的模块
from pyecharts import options as opts from pyecharts.charts import Bar, Page from pyecharts.faker import Collector, Faker from pyecharts.globals import ThemeType
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Light"))
) c.render("1.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.DARK))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Dark"))
) c.render("2.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.CHALK))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Chalk"))
) c.render("3.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.ESSOS))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Essos"))
) c.render("4.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.INFOGRAPHIC))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Infographic"))
) c.render("5.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.MACARONS))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Macarons"))
) c.render("6.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.PURPLE_PASSION))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-PURPLE_PASSION"))
) c.render("7.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.ROMA))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-ROMA"))
) c.render("8.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.ROMANTIC))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-ROMANTIC"))
) c.render("9.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.SHINE))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Shine"))
) c.render("10.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Vintage"))
) c.render("11.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.WALDEN))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Walden"))
) c.render("12.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.WESTEROS))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Westeros"))
) c.render("13.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.WONDERLAND))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Wonderland"))
) c.render("14.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.HALLOWEEN))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Halloween"))
) c.render("15.html")
output
我们同时还能为自己绘制的图表配上自带的背景图片
c = (
Bar(
init_opts=opts.InitOpts(
bg_color={"type": "pattern", "image": JsCode("img"), "repeat": "no-repeat"}
)
)
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.set_global_opts(
title_opts=opts.TitleOpts(
title="Bar-背景图基本示例",
subtitle="我是副标题",
title_textstyle_opts=opts.TextStyleOpts(color="white"),
)
)
)
c.add_js_funcs( """
var img = new Image(); img.src = 'https://t7.baidu.com/it/u=2638406194,523661981&fm=193&f=GIF';
""" )
c.render("柱状图-自带背景图.html")
output
好吧,最后一张稍微有点丑,但是读者朋友们可以替换成自己喜欢的背景图片,说不定会非常的好看。
所以看了这么多张图之后,你们最喜欢哪种风格的呢?评论区留言。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13