
今天CDA给大家分享的内容:Pandas遇上Excel会擦出什么样的火花?
作者: 俊欣
来源:关于数据分析与可视化
大家好,又是新的一周。
Excel是我们职场打工人接触最多的办公室软件之一,当中会涉及到很多重复的操作,好在Python为我们提供了很多操作Excel的模块,能够帮助我们极大地提高工作效率,从琐碎的工作时间中抽出身来。
今天我们要介绍的模块是xlsxwriter,它的主要功能是在Excel表格当中插入数据、插入图表,以及进行一系列数据的处理,
直接在命令行中输入
pip install xlsxwriter
或者使用豆瓣镜像
pip install -i https://pypi.douban.com/simple xlsxwriter
安装成功之后,来看一下如何使用
当我们用pandas模块对Excel表格进行处理的时候,需要引用xlsxwriter模块作为内在的引擎。我们来实现一下如何将多个DataFrame数据保存在一张Excel表格当中,并且分成不同的sheet
import pandas as pd # 创建几个DataFrame数据集 df1 = pd.DataFrame({'Data': [11, 13, 15, 17]})
df2 = pd.DataFrame({'Data': [21, 23, 25, 27]})
df3 = pd.DataFrame({'Data': [31, 33, 35, 37]}) # 引入xlsxwriter作为引擎,制作ExcelWriter写入器 writer = pd.ExcelWriter('pandas_multiple.xlsx', engine='xlsxwriter') # 将不同的DataFrame数据集写入不同的sheetd当中 df1.to_excel(writer, sheet_name='Sheet1')
df2.to_excel(writer, sheet_name='Sheet2')
df3.to_excel(writer, sheet_name='Sheet3') # 输出生成的Excel文件 writer.save()
我们就可以在同级目录中看到生成的一个Excel文件,在不同的Sheet当中分别存放着指定的数据集
将多个DataFrame数据集放在同一张Sheet当中,通过当中的参数startcol与startrow,顾名思义就是从哪一行、哪一列开始
df1 = pd.DataFrame({'Data': [11, 13, 15, 17]})
df2 = pd.DataFrame({'Data': [21, 23, 25, 27]})
df3 = pd.DataFrame({'Data': [31, 33, 35, 37]})
df4 = pd.DataFrame({'Data': [41, 43, 45, 47]})
writer = pd.ExcelWriter('pandas_positioning.xlsx', engine='xlsxwriter') # 存放在指定的位置当中 df1.to_excel(writer, sheet_name='Sheet1') # 默认位置是从A1开始的 df2.to_excel(writer, sheet_name='Sheet1', startcol=4)
df3.to_excel(writer, sheet_name='Sheet1', startrow=8) # 当然我们不需要header和index df4.to_excel(writer, sheet_name='Sheet1',
startrow=10, startcol=15, header=False, index=False)
writer.save()
如下图所示
下面我们来看一下,如何利用Pandas来根据表格中的数据绘制柱状图,并且保存在Excel表格当中,在xlsxwriter模块当中有add_chart()方法,提供了9中图表的绘制方法,我们先来看一下柱状图的绘制
df = pd.DataFrame({'Data': [10, 20, 30, 20, 15, 30, 45]})
writer = pd.ExcelWriter('pandas_chart.xlsx', engine='xlsxwriter')
df.to_excel(writer, sheet_name='Sheet1')
workbook = writer.book
worksheet = writer.sheets['Sheet1'] # 绘制柱状图图表 chart = workbook.add_chart({'type': 'column'}) # 根据哪些数据来绘制图表 chart.add_series({'values': '=Sheet1!$B$2:$B$8'}) # 将绘制完成的图表插入到sheet当中 worksheet.insert_chart('D2', chart)
writer.save()
如下图所示
我们只需要针对上面的代码,将type当中的column改成line即可绘制折线图
df = pd.DataFrame({'Data': [10, 20, 30, 20, 15, 30, 45]})
writer = pd.ExcelWriter('pandas_line.xlsx', engine='xlsxwriter')
df.to_excel(writer, sheet_name='Sheet1')
workbook = writer.book
worksheet = writer.sheets['Sheet1'] # 绘制折线图图表 chart = workbook.add_chart({'type': 'line'}) # 根据哪些数据来绘制图表 chart.add_series({'values': '=Sheet1!$B$2:$B$8'}) # 将绘制完成的图表插入到sheet当中 worksheet.insert_chart('D2', chart)
writer.save()
如下图所示
除了折线图与直方图之外,小编也在上面提到,xlsxwriter模块提供了绘制9中图表的方法,分别是
我们仅仅只需要在add_chart()方法当中,填入对应的图表的类型即可
当然图表绘制出来之后,我们还需要添加例如标题、标记等辅助内容,毕竟我们希望绘制出来的图表能够被更多的人给理解,
添加标题是去调用set_title()方法
chart.set_title({'name': '.....'})
添加x轴与y轴上面的标注,需要用到的方法是
chart.set_x_axis({'name': '...'})
chart.set_y_axis({'name': '...'})
我们尝试来绘制一个直方图,并且添加上这些辅助信息
import xlsxwriter
workbook = xlsxwriter.Workbook('chart.xlsx')
worksheet = workbook.add_worksheet() # Create a new Chart object. chart = workbook.add_chart({'type': 'column'}) # 创建数据 data = [
[1, 3, 5, 7, 9],
[2, 4, 6, 8, 10],
[3, 6, 9, 12, 15],
]
worksheet.write_column('A1', data[0])
worksheet.write_column('B1', data[1])
worksheet.write_column('C1', data[2]) # 基于指定的数据集来绘制图表 chart.add_series({'values': '=Sheet1!$A$1:$A$5'})
chart.add_series({'values': '=Sheet1!$B$1:$B$5'})
chart.add_series({'values': '=Sheet1!$C$1:$C$5'}) # 标题与标注 chart.set_title({"name": "直方图"})
chart.set_x_axis({'name': '这个是X轴'})
chart.set_y_axis({'name': '这个是Y轴'}) # 将绘制出来的图表插入到sheet当中 worksheet.insert_chart('A7', chart)
workbook.close()
如下图所示
同时我们还可以将两种图表结合起来,例如是将折线图与直方图这两种图表结合起来绘制,通过内置的combine()方法
chart = workbook.add_chart({'type': 'column'})
chart.add_series({'values': '=Sheet1!$B$2:$B$8'})
line_chart = workbook.add_chart({"type": "line"})
line_chart.add_series({'values': '=Sheet1!$B$2:$B$8'})
chart.combine(line_chart)
如下图所示
我们可以对数据,尤其是一些小数,指定保留例如两位小数,或者是指定位数的小数,代码如下
df = pd.DataFrame({'Numbers': [1010, 2020, 3030, 2020, 1515, 3030, 4545], 'Percentage': [.1, .2, .33, .25, .5, .75, .45 ], }) writer = pd.ExcelWriter("pandas_column_formats.xlsx", engine='xlsxwriter') df.to_excel(writer, sheet_name='Sheet1') workbook = writer.book worksheet = writer.sheets['Sheet1'] # 指定保留小数的位数 format1 = workbook.add_format({'num_format': '#,##0.00'}) format2 = workbook.add_format({'num_format': '0%'}) # 设置列的宽度以及保留小数的位数 worksheet.set_column('B:B', 18, format1) # 不设置列的宽度,但是设置保留小数的位数 worksheet.set_column('C:C', None, format2) writer.save()
如下图所示
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10