京公网安备 11010802034615号
经营许可证编号:京B2-20210330
今天CDA为大家分享:Pyecharts绘制22种超实用精美图表
作者:俊欣
来源:关于数据分析与可视化
今天来给大家分享一下Pyecharts模块,说到它我们就不得不提Echarts,它是由百度开源的一款使用JavaScript实现的开源可视化库,涵盖了各种图表、满足各类业务需求,而pyecharts也就是Python与Echarts结合之后的产物,封装了Echarts各类图表的基本操作,然后通过渲染机制,输出一个包含JS代码的HTML文件。
说到安装模块,我们可以这样来进行,
pip install pyecharts
使用Pyecharts创建图形的基本步骤是
1. 准备数据
2. 设计图形的样式、背景颜色
3. Pyecharts绘图
4. 设计图表的标题或者图例等属性
5. 导出至html
from pyecharts import options as opts from pyecharts.charts import Bar from pyecharts.faker import Faker
c = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="这是主标题", subtitle="这是副标题"))
.render("bar_base.html")
)
出来的结果是
import pandas as pd import numpy as np data = pd.DataFrame({'x':np.arange(1,101), 'y':["随机生成的数字"]})
df = pd.read_excel("你的文件的路径")
Pyecharts内部还提供了一些数据集,主要包含类别数据、时间数据、颜色数据、地理数据、世界人口数据等等,通过choose()方法来随机选择使用哪个
def choose(self) -> list: return random.choice(
[ self.clothes, self.drinks, self.phones, self.fruits, self.animal, self.dogs, self.week,
]
)
说到图形的样式,大概都这么几种
class _ThemeType:
BUILTIN_THEMES = ["light", "dark", "white"]
LIGHT = "light" DARK = "dark" WHITE = "white" CHALK: str = "chalk" ESSOS: str = "essos" INFOGRAPHIC: str = "infographic" MACARONS: str = "macarons" PURPLE_PASSION: str = "purple-passion" ROMA: str = "roma" ROMANTIC: str = "romantic" SHINE: str = "shine" VINTAGE: str = "vintage" WALDEN: str = "walden" WESTEROS: str = "westeros" WONDERLAND: str = "wonderland" HALLOWEEN: str = "halloween"
设置标题以及副标题的代码如下
set_global_opts(title_opts=opts.TitleOpts(title="这是主标题",
subtitle="这是副标题"))
legend_opts=opts.LegendOpts(type_="scroll", orient="vertical",
pos_top="15%",pos_left="7%")) # 图裂的位置 label_opts=opts.LabelOpts(formatter="{b}: {c}") # 结果的展现形式
render("test.html")
# 如果是在jupyter notebook当中 render_notebook()
堆叠柱状图
同个品类不同类目的柱子可以堆叠起来呈现,也就是堆叠的柱状图
c = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values(), stack="stack1")
.add_yaxis("商家2", Faker.values(), stack="stack1")
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-堆叠数据(全部)"))
.render("bar_stack_1212.html")
)
当然我们也可以部分堆叠,而不是上面这种全部的堆叠
c = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values(), stack="stack0")
.add_yaxis("商家2", Faker.values(), stack="stack0")
.add_yaxis("商家3", Faker.values())
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-堆叠数据(部分)"))
.render("bar_stack_part.html")
)
柱状图的横坐标倾斜一丢丢
有时候横坐标的标识字数较多,X轴上显示全,我们可以将标识的字体稍微倾斜一些
c = (
Bar()
.add_xaxis(
[ "名字相当长的X轴标签1", "名字相当长的X轴标签2", "名字相当长的X轴标签3", "名字相当长的X轴标签4", "名字相当长的X轴标签5", "名字相当长的X轴标签6", ]
)
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=15)),
title_opts=opts.TitleOpts(title="Bar-旋转X轴标签", subtitle="副标题"),
)
.render("test.html")
)
柱状图可以自动缩放的
通过底下的滑块来实现横坐标的缩放、范围的调整等等
c = (
Bar()
.add_xaxis(Faker.days_attrs)
.add_yaxis("商家1", Faker.days_values)
.set_global_opts(
title_opts=opts.TitleOpts(title="Bar-数据缩放(拖快-水平)"),
datazoom_opts=opts.DataZoomOpts(),
)
.render("bar_datazoom_slider.html")
)
当然滑块也可以放在垂直的右侧
c = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add_xaxis(Faker.days_attrs)
.add_yaxis("商家1", Faker.days_values, color=Faker.rand_color())
.set_global_opts(
title_opts=opts.TitleOpts(title="Bar-DataZoom(滑块-垂直)"),
datazoom_opts=opts.DataZoomOpts(orient="vertical"),
)
.render("bar_datazoom_slider_vertical.html")
)
我们也可以通过拖动里面的柱子来实现数据缩放、范围的改变
c = (
Bar()
.add_xaxis(Faker.days_attrs)
.add_yaxis("商家1", Faker.days_values)
.set_global_opts(
title_opts=opts.TitleOpts(title="Bar-DataZoom(内置+外置)"),
datazoom_opts=[opts.DataZoomOpts(), opts.DataZoomOpts(type_="inside")],
)
.render("bar_datazoom_both.html")
)
柱状图给X轴Y轴命名的
c = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(
title_opts=opts.TitleOpts(title="Bar-XY 轴名称"),
yaxis_opts=opts.AxisOpts(name="这个是 Y 轴"),
xaxis_opts=opts.AxisOpts(name="这个是 X 轴"),
)
.render("bar_name_xyaxis.html")
)
柱状图柱间距离不相同的
在柱状图当中,不同柱子之间的距离也可以不是相同的
c = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.WHITE))
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values(), gap="0%")
.add_yaxis("商家2", Faker.values(), gap="0%")
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-柱间距离不同"))
.render("bar_different_series_gap.html")
)
柱状图水平状态的
还有水平方向的柱状图
c = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.reversal_axis()
.set_series_opts(label_opts=opts.LabelOpts(position="right"))
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-水平方向"))
.render("bar_reversal_axis.html")
)
c = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values(), category_gap=0, color=Faker.rand_color())
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-直方图"))
.render("bar_histogram.html")
)
箱型图更加有利于我们来观察数据的内在分布
from pyecharts.charts import Boxplot v1 = [ [850, 740, 950, 1090, 930, 850, 950, 980, 1000, 880, 1000, 980], [980, 940, 960, 940, 900, 800, 850, 880, 950, 840, 830, 800], ] v2 = [ [890, 820, 820, 820, 800, 770, 760, 760, 750, 760, 950, 920], [900, 840, 800, 810, 760, 810, 790, 850, 820, 850, 870, 880], ] c = Boxplot() c.add_xaxis(["A", "B"]) c.add_yaxis("类目1", c.prepare_data(v1)) c.add_yaxis("类目2", c.prepare_data(v2)) c.set_global_opts(title_opts=opts.TitleOpts(title="箱型图-基本示例")) c.render("boxplot_test.html")
日历图
日历图具体指按照日历的布局,用颜色展现每一天的数据,从而比较直观地看到全年的数据情况,例如展示超市全年的销售额,从而看出具体某个月份或者某个星期的销售额比较低
c = ( Calendar(init_opts=opts.InitOpts(theme=ThemeType.INFOGRAPHIC)) .add("", data, calendar_opts=opts.CalendarOpts(range_="2020")) .set_global_opts( title_opts=opts.TitleOpts(title="日历图-2020年超市的销售额"), visualmap_opts=opts.VisualMapOpts( max_=250000, min_=10000, orient="horizontal", is_piecewise=True, pos_top="230px", pos_left="100px", ), ) .render("calendar_test.html") )
K线图
c = (
Kline(init_opts=opts.InitOpts(theme=ThemeType.ESSOS))
.add_xaxis(["2020/7/{}".format(i + 1) for i in range(31)])
.add_yaxis("kline", data)
.set_global_opts(
yaxis_opts=opts.AxisOpts(is_scale=True),
xaxis_opts=opts.AxisOpts(is_scale=True),
title_opts=opts.TitleOpts(title="K线图-基本示例"),
)
.render("kline_test.html")
)
from pyecharts.charts import Funnel c = ( Funnel()
.add("类目", [list(z) for z in zip(Faker.choose(), Faker.values())])
.set_global_opts(title_opts=opts.TitleOpts(title="漏斗图-基本示例"))
.render("funnel_test.html")
)
c = (
Line()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="折线图-基本示例"))
.render("line_test.html")
)
水球图
水球图通常来显示指标的完成程度
from pyecharts.charts import Liquid c = ( Liquid()
.add("lq", [0.55, 0.75])
.set_global_opts(title_opts=opts.TitleOpts(title="Liquid-基本示例"))
.render("liquid_test.html")
)
c = (
WordCloud()
.add(series_name="词云图实例", data_pair=data, word_size_range=[5, 100])
.set_global_opts(
title_opts=opts.TitleOpts(
title="词云图实例", title_textstyle_opts=opts.TextStyleOpts(font_size=23)
),
tooltip_opts=opts.TooltipOpts(is_show=True),
)
.render("basic_wordcloud.html")
)
饼图
c = ( Pie()
.add("类目", [list(z) for z in zip(Faker.choose(), Faker.values())])
.set_global_opts(title_opts=opts.TitleOpts(title="饼图-基本示例"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
.render("pie_test.html")
)
仪表盘图
仪表盘的绘制也可以用来展示指标的完成程度
from pyecharts.charts import Gauge c = ( Gauge()
.add("", [("完成率", 70)])
.set_global_opts(title_opts=opts.TitleOpts(title="仪表盘-基本示例"))
.render("gauge_test.html")
)
c = ( Map()
.add("商家1", [list(z) for z in zip(Faker.provinces, Faker.values())], "china")
.set_global_opts(title_opts=opts.TitleOpts(title="地图-基本示例"))
.render("map_test.html")
)
涟漪散点图
c = (
EffectScatter()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="涟漪散点图-基本示例"))
.render("effectscatter_test.html")
)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15