SPSS详细操作:多个独立样本列联表的卡方检验
上一期我们聊到了独立样本四格表的卡方检验,实际上临床也经常会遇到分组超过2个的计数资料,这一期我们来一起搞定多个独立样本列联表的χ2检验。
一、问题与数据
以下是胃癌真菌病因研究中3种食物样品的真菌检出率,比较3个检出率有无差异。
表1 物种食物样品的真菌检出率
二、对数据结构的分析
本例是独立四格表χ2检验的拓展,由两个分组增加到多个分组,分析思路与四格表χ2检验类同,需要注意的是,这里我们不光想知道多个分组间有无差异,如果差异存在统计学意义,那么具体到组间两两比较是否均存在差异。
三、SPSS分析方法
多个独立样本列联表χ2检验的SPSS操作与四格表一样,这里不再赘述(忘记的小伙伴赶快戳SPSS详细操作:独立样本四格表的χ2检验,复习一下)。需要注意的是,不同于四格表χ2检验,SPSS对于R*C列联表χ2检验不会自动输出Fisher确切概率检验结果,如果样本例数较少,建议在Exact设置中勾选Exact(如下图)。
四、结果解读
表2 统计汇总
表3 卡方检验结果
多个独立样本列联表χ2检验的结果选择:
1、所有理论频数≥5,看Pearson Chi-Square的结果;
2、超过20%的理论频数<5或至少1个理论频数<1,看Fisher’s Exact Test结果(也可以考虑增加样本量或者依据专业判断适当合并行或列,再进行χ2检验)。
本例中SPSS提示没有理论频数小于5,且最小的理论频数为8.00,故直接选择Pearson Chi-Square结果,即χ2=22.841,P<0.001,提示三种食物中真菌检出率不同。
五、组间的两两比较
通过上述χ2检验,明确了三种食物的真菌检出率并不相同,此时我们还需要进一步考虑三种食物真菌检出率到底谁与谁之间的差异存在统计学意义,这里就需要用到“卡方分割”,通俗讲就是把R*C列联表拆分成若干个四个表分别进行χ2检验,进而判断不同组两两比较差异是否用统计学意义,但是,因为多组比较可能会增加犯I类错误概率,所以还需要对χ2检验的P值进行校正,这里主要介绍 Bonferroni校正。
本例中需要进行3次两两比较,校正的检验水准α=0.05/比较次数=0.05/3=0.0167。
到这里,有的小伙伴要问了,SPSS数据库中原来有3组,怎么才能方便地构造任意两组的“四格表”,进行χ2检验呢?这里教大家一个SPSS中比较实用的小技巧——选择特定对象进行统计分析。
A、菜单的Data中找到Select Cases
B、Select Cases中提供了多种用于选择研究对象的方式 ,这里我们将用到条件筛选(如下图)
C、条件筛选中提供了丰富的筛选公式,假如想选择1-大米和2-地瓜粉,可以做如下图设置,“食物=1|食物=2”,这里“|”代表“或者”,即数据库只要有1或者2都会被选中进行统计分析→Continue。
按照上面介绍的小技巧,我们就可以进行任意两组的四格表χ2检验(表4)
表4. 不同食物真菌检出率比较
如上表,按照校正的检验水准α=0.0167,大米和地瓜粉,大米和豆酱之间的真菌检出率差异具有统计学意义,而地瓜粉和豆酱之间差异无统计学意义。
六、撰写结论
大米、地瓜粉和豆酱的真菌检出率并不相同(χ2=22.841,P<0.001),其中地瓜粉最高为96.7%,其次为豆酱为80.0%,大米最低为43.3%。大米的真菌检出率分别与地瓜粉和豆酱相比差异均有统计学意义(Bonferroni校正,P<0.0167),而地瓜粉和豆酱之间真菌检查率差异无统计学意义(Bonferroni校正,P>0.0167)。
PS: 多个独立样本的χ2检验除了包含上述R*2列联表卡方检验外,还包含R*C卡方检验,即我们考虑的指标变量为多分类(例如血型),其统计分析思路和SPSS操作分析与R*2列联表卡方检验一致,这里不再赘述。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31