作者:俊欣
来源:关于数据分析与可视化
大家好,又是新的一周。大家一般会用Pandas模块来对数据集进行进一步的分析与挖掘关键信息,但是当我们遇到数据集特别特别大的时候,内存就会爆掉,今天小编就来分享几个技巧,来帮助你避免遇到上述提到的这个情况。
read_csv()方法当中的chunksize参数顾名思义就是对于超大csv文件,我们可以分块来进行读取,例如文件当中有7000万行的数据,我们将chunksize参数设置为100万,每次分100万来分批读取,代码如下
# read the large csv file with specified chunksize df_chunk = pd.read_csv(r'data.csv', chunksize=1000000)
这时我们得到的df_chunk并非是一个DataFrame对象,而是一个可迭代的对象。接下来我们使用for循环并且将自己创立数据预处理的函数方法作用于每块的DataFrame数据集上面,代码如下
chunk_list = [] # 创建一个列表chunk_list # for循环遍历df_chunk当中的每一个DataFrame对象 for chunk in df_chunk: # 将自己创建的数据预处理的方法作用于每个DataFrame对象上 chunk_filter = chunk_preprocessing(chunk) # 将处理过后的结果append到上面建立的空列表当中 chunk_list.append(chunk_filter) # 然后将列表concat到一块儿 df_concat = pd.concat(chunk_list)
当然我们还可以进一步将不重要的列都给去除掉,例如某一列当中存在较大比例的空值,那么我们就可以将该列去除掉,代码如下
# Filter out unimportant columns df = df[['col_1','col_2', 'col_3', 'col_4', 'col_5', 'col_6','col_7', 'col_8', 'col_9', 'col_10']]
当然我们要去除掉空值可以调用df.dropna()方法,一般也可以提高数据的准确性以及减少内存的消耗
最后我们可以通过改变数据类型来压缩内存空间,一般情况下,Pandas模块会给数据列自动设置默认的数据类型,很多数据类型里面还有子类型,而这些子类型可以用更加少的字节数来表示,下表给出了各子类型所占的字节数
对于内存当中的数据,我们可以这么来理解,内存相当于是仓库,而数据则相当于是货物,货物在入仓库之前呢需要将其装入箱子当中,现在有着大、中、小三种箱子,
现在Pandas在读取数据的时候是将这些数据无论其类型,都是装到大箱子当中去,因此会在很快的时间里仓库也就是内存就满了。
因此我们优化的思路就在于是遍历每一列,然后找出该列的最大值与最小值,我们将这些最大最小值与子类型当中的最大最小值去做比较,挑选字节数最小的子类型。
我们举个例子,Pandas默认是int64类型的某一列最大值与最小值分别是0和100,而int8类型是可以存储数值在-128~127之间的,因此我们可以将该列从int64类型转换成int8类型,也就同时节省了不少内存的空间。
我们将上面的思路整理成代码,就是如下所示
def reduce_mem_usage(df): """ 遍历DataFrame数据集中的每列数据集 并且更改它们的数据类型 """ start_memory = df.memory_usage().sum() / 1024**2 print('DataFrame所占用的数据集有: {:.2f} MB'.format(start_memory)) for col in df.columns: col_type = df[col].dtype if col_type != object: col_min = df[col].min() col_max = df[col].max() if str(col_type)[:3] == 'int': if col_min > np.iinfo(np.int8).min and col_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif col_min > np.iinfo(np.int16).min and col_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif col_min > np.iinfo(np.int32).min and col_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif col_min > np.iinfo(np.int64).min and col_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if col_min > np.finfo(np.float16).min and col_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif col_min > np.finfo(np.float32).min and col_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) end_memory = df.memory_usage().sum() / 1024**2 print('优化过之后数据集的内存占有: {:.2f} MB'.format(end_memory)) print('减少了大约有: {:.1f}%'.format(100 * (start_memory - end_memory) / start_memory)) return df
大家可以将小编写的这个函数方法拿去尝试一番,看一下效果如何!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31