CDA数据分析师 出品
大家好,我是CDA就业班的学员,目前在某知名互联网企业从事数据分析工作。今天给大家分享一下我在面试过程中的一些经验教训,希望能给大家一些帮助。
之前我面试过一家做广告投放的公司。在面试之前,我对这个公司做哪几块业务做了了解,并且在网上找了广告投放的相关案例。
在面试时,我会根据这个项目和案例跟面试官进行介绍。说一下我会用什么算法去做这个案例,会考虑哪些维度,说明自己的大概思路,让面试官觉得你对这个项目有一定的了解。
当时我介绍了做相应项目时,在变量方面我主要考虑了两个维度:一个方面是投放后的用户行为,比如注册时间,访问的深度转换率等;另一方面,投放广告本身的维度,比如广告的尺寸、广告的卖点、广告的投放渠道等。
根据这两个维度,构建模型,最后得到了什么样的结果。当时我阐述的是,通过算法我将用户分成几类,并通过聚类提取每类用户的特征。根据投放的广告,可能第一类用户在注册方面一般,但付费方面转化比较好。然后二类用户的话,在用户精确度方面就表现得更好。第三类用户,在转化方便表现不太好,但在注册拉新方面表现很不错等等。
接着讲清楚在实际当中是怎么运用的,如何给到业务部门意见。在进行分析中,每个渠道有对应的唯一标志,业务部门可以追溯到具体渠道。
比如各方面表现欠佳的用户类别,在预算不足的情况下,是否要选择放弃。对于一类和二类用户,就可以加大投放,特别第二类用户,因为其各方面质量非常高。如果注册方面不太好,我们是否考虑针对,这两类用户对注册引导进行改进。相对而说,第四类用户注册数据很好,在要做大型活动促销时,需要大量用户流量进来,这时就可以考虑把第四个渠道作为业务部门的主推渠道,这会很利于拉新。
我在给面试官阐述项目时大概是以上的思路。首先基于哪些维度考虑分析问题,然后用了什么算法,得出怎样的结论,结论是如何给业务部门赋能的。
通过这样的介绍,面试官会对你阐述的内容比较感兴趣,并且进行进一步提问,会涉及到一些技术性的问题。比如用到算法的原理是怎么样,以及数据清洗的问题等等。
比如刚刚提到的维度中有注册率、广告尺寸这些维度不是一个类型的,该怎么进行处理呢?
这时你要明白,面试官是在问关于数据清洗的问题。
你可以回答,我们对数据肯定要进行处理,比如哑编码等方式,以及调用什么包进行处理。同时你需要对整个流程非常熟悉,做到心中有数。
这里值得强调一下的是,在准备面试的项目介绍方面,需要准备得更充分。
比如项目从开始准备到落地,具体花了多长时间,团队是几个人负责的项目等,这些在面试过程中都会问到。
面试官的目的是想通过项目的时间,参与的人数来判断项目的真实性。因为企业考虑到如果是虚拟的项目,可参考的价值就不大了。一般企业想知道你所解决的项目是真实的,当时你具体是怎么做的。因为对于企业而言,他们都想招到一些有实际业务经验、有数据分析相关项目经验的候选人。
因此求职的小伙伴们,在准备过程中要把这方面梳理地详细一些,熟悉所做过的项目,了解面试公司所做的业务。
技术性问题方面,大多会考察SQL和Python相关的技术点,这方面大家可以多刷题来提高。
值得注意的是,大家一定要提前了解面试企业的主要业务,在回答面试相关问题的时候,尽可能贴近目标企业的主要的业务来举案例,这样的话更容易把问题控制在自己可控制的范畴内。
这里有个小技巧,在HR通知你去面试的时候,你可以问HR要一下公司的对外资料,一般情况下都会给的,这样能帮助你了解熟悉面试公司的业务情况。同时,面试中尽量把问题控制在自己熟悉的领域。
以上就是我本次的分享了,希望对大家有所帮助,也祝大家求职顺利。数据分析的能力的培养不是能够一蹴而就的,除了基础的模型和思维的掌握之外,还需要大量实践经验的积累。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10