作者:俊欣
来源:关于数据分析与可视化
今天来分享一个高效率的数据清洗的方法,毕竟我们平常在工作和生活当中经常会遇到需要去处理杂七杂八的数据集,有一些数据集中有缺失值、有些数据集中有极值、重复值等等。这次用到的数据集样本在文末有获取的办法。
我们首先导入所需要用到的库,并且读取数据
import pandas as pd import numpy as np
df = pd.read_csv("DirectMarketing.csv")
我们先来大致地看一下数据集中各个特征值的情况,通过info()这个方法
df.info()
我们看到上面的“History”这一列,只有697条数据不是空值,那就意味着还有另外3条数据是空值,与之对应的方式有将含有缺失值的数据删掉,或者将缺失值的部分替换为是中位数或者是平均数,
# 将缺失值给移除掉 df.dropna(axis = 0, inplace = True)
要是数据集中存在大量的缺失值,只是简简单单地移除掉怕是会影响到数据的完整性,如果是数值类型的特征值,就用用平均值或者是中位数来替换,如果是离散类型的缺失值,就用众数来替换
def fill_missing_values_num(df, col_name): val = df[col_name].median()
df[col_name].fillna(val, inplace = True) return df
def fill_missing_values_cate(df, col_name): val = df[col_name].value_counts().index.tolist()[0]
df[col_name].fillna(val, inplace = True) return df
而可能存在重复值的部分,pandas当中有drop_ducplicates()方法来进行处理
df.drop_duplicates(inplace = True)
最后我们封装成一个函数,对于缺失值的处理小编这里选择用中位数填充的方式来处理
def fill_missing_values_and_drop_duplicates(df, col_name): val = df[col_name].value_counts().index.tolist()[0]
df[col_name].fillna(val, inplace = True) return df.drop_duplicates()
经常使用pandas的人可能都有这种体验,它经常会将数据集中的变量类型直接变成object,这里我们可以直接使用“convert_dtypes”来进行批量的转换,它会自动推断数据原来的类型,并实现转换,并且打印出来里面各列的数据类型,封装成一个函数
def convert_dtypes(df): print(df.dtypes) return df.convert_dtypes()
对于极值的检测有多种方式,例如我们可以通过箱型图的方式来查看
sample = [11, 500, 20, 24, 400, 25, 10, 21, 13, 8, 15, 10] plt.boxplot(sample, vert=False) plt.title("箱型图来检测异常值",fontproperties="SimHei") plt.xlabel('样本数据',fontproperties="SimHei")
我们可以通过箱型图来明显的看出当中有两个异常值,也就是400和500这两个,箱型图由最大值、上四分位数(Q3)、中位数(Q2)、下四分位数和最小值五个统计量组成,其中Q1和Q3之间的间距称为是四分位间距(interquartile range,IQR),而通常若是样本中的数据大于Q3+1.5IQR和小于Q1-1.5IQR定义为异常值
当然了除此之外,还可以通过z-score的方法来检测,Z-score是以标准差为单位去度量某个数据偏离平均数的距离,计算公式为
我们用python来实现一下当中的步骤
outliers = [] def detect_outliers_zscore(data, threshold): mean = np.mean(data) std = np.std(data) for i in data: z_score = (i-mean)/std if (np.abs(z_score) > threshold): outliers.append(i) return outliers# Driver code
而对待异常值的方式,首先最直接的就是将异常值给去掉,我们检测到异常值所在的行数,然后删掉该行,当然当数据集当中的异常值数量很多的时候,移除掉必然会影响数据集的完整性,从而影响建模最后的效果
def remove_outliers1(df, col_name): low = np.quantile(df[col_name], 0.05)
high = np.quantile(df[col_name], 0.95) return df[df[col_name].between(low, high, inclusive=True)]
其次我们可以将异常值替换成其他的值,例如上面箱型图提到的上四分位数或者是下四分位数
def remove_outliers2(df, col_name): low_num = np.quantile(df[col_name], 0.05) high_num = np.quantile(df[col_name], 0.95) df.loc[df[col_name] > high_num, col_name] = high_num df.loc[df[col_name] < low_num , col_name] = low_num return df
因此回到上面用到的样本数据集,我们将之前数据清洗的函数统统整合起来,用pipe()的方法来串联起来,形成一个数据清洗的标准模板
def fill_missing_values_and_drop_duplicates(df, col_name): val = df[col_name].value_counts().index.tolist()[0]
df[col_name].fillna(val, inplace = True) return df.drop_duplicates() def remove_outliers2(df, col_name): low_num = np.quantile(df[col_name], 0.05)
high_num = np.quantile(df[col_name], 0.95)
df.loc[df[col_name] > float(high_num), col_name] = high_num return df def convert_dtypes(df): print(df.dtypes) return df.convert_dtypes()
df_cleaned = (df.pipe(fill_missing_values_and_drop_duplicates, 'History').
pipe(remove_outliers2, 'Salary').
pipe(convert_dtypes))
所以我们之后再数据清洗的过程当中,可以将这种程序化的清洗步骤封装成一个个函数,然后用pipe()串联起来,用在每一个数据分析的项目当中,更快地提高我们工作和分析的效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06