作者: 派森酱
来源:Python 技术
随着圣诞节的到来,节日气氛也越来越浓厚。大街上随处可见挂满饰品的圣诞树,好多小伙伴的头上也多了一顶红色牛角的圣诞帽。
往年在这个时候,好多 P图软件 会推出给头像加一顶圣诞帽的功能,甚至有一年大伙 @微信官方 就可以在自己的微信头像上加一顶圣诞帽。
作为一个学习 Python 的技术人,自己可以写程序实现这个功能,做成一个软件当然是一件很酷的事情了。
今天就给大家分享一下如何用 Python 制作一款自动给头像添加圣诞帽的软件。
如果不想看实现,可以直接跳到文末获取软件。
我们的 头像添加圣诞帽软件 制作的大致思路如下:
基于以上思路,我们制作这款软件的关键词有:
看了以上思路,相信大家脑海中已经对这个软件制作的过程有了一个大致的框架了。我们的实现主要分为:图像制作、GUI界面、打包三大块内容。
首先列举一下本次软件制作过程中需要用的的一些包模块:
pip install opencv-python
python 系统模块
pip install dlib
pip install pandas
pip install PySimpleGui
温馨提示:这其中安装 dlib 会遇到很多坑以及很多困难,一般需要一边安装一边上网搜索报错,从而找到解决办法。保证安装过一次之后不想尝试第二次。
我们需要准备一个圣诞帽的图片,格式最好为 png ,因为 png 图片我们可以直接用 Alpha通道 作为掩膜使用。如果是 jpg 图片,需要先转换成 png 格式图片。注意这里的转换不是只改个后缀名,那样是行不通的。
我们用到的圣诞帽如下图:
为了能够与 RGB 通道的头像图片进行运算,我们需要把圣诞帽图像分离成 RGB 通道图像和 alpha通道图像:
r,g,b,a = cv2.split(hat_img)
rgb_hat = cv2.merge((r,g,b))
cv2.imwrite("hat_alpha.jpg",a)
分离之后,得到的 alpha通道图像如下所示:
我从我的百宝箱中选择了一张傻萌傻萌的图片作为程序的测试图片。
大家注意,因为我们要做人脸识别,然后自动添加帽子,所以选择的图片一定要是真人的正面照片,不然识别不了人脸,也就不知道在哪添加圣诞帽。
下面我们用 dlib 的正脸检测器进行人脸检测,用 dlib 提供的模型提取人脸的五个关键点。代码如下:
# dlib人脸关键点检测器 predictor_path = "shape_predictor_5_face_landmarks.dat" predictor = dlib.shape_predictor(predictor_path) # dlib正脸检测器 detector = dlib.get_frontal_face_detector() # 正脸检测 dets = detector(img, 1) # 如果检测到人脸 if len(dets)>0: for d in dets: x,y,w,h = d.left(),d.top(), d.right()-d.left(), d.bottom()-d.top() # x,y,w,h = faceRect cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2,8,0) # 关键点检测,5个关键点 shape = predictor(img, d) for point in shape.parts(): cv2.circle(img,(point.x,point.y),3,color=(0,255,0)) cv2.imshow("image",img) cv2.waitKey()
我们把图片打印出来的效果是这样的:
看到这个图片是不是有点熟悉,网上好多人脸识别的图片都是这样的。
我们选取两个眼角的点,求中心作为放置帽子的x方向的参考坐标,y 方向的坐标用人脸框上线的 y 坐标表示。
然后我们根据人脸检测得到的人脸的大小调整帽子的大小,使得帽子大小合适。
看到这里,你应该明白,我们头像的图片中人的脸越正面那么我们制作出来的效果越好。
# 选取左右眼眼角的点 point1 = shape.part(0) point2 = shape.part(2) # 求两点中心 eyes_center = ((point1.x+point2.x)//2,(point1.y+point2.y)//2) # 根据人脸大小调整帽子大小 factor = 1.5 resized_hat_h = int(round(rgb_hat.shape[0]*w/rgb_hat.shape[1]*factor)) resized_hat_w = int(round(rgb_hat.shape[1]*w/rgb_hat.shape[1]*factor)) if resized_hat_h > y: resized_hat_h = y-1 # 根据人脸大小调整帽子大小 resized_hat = cv2.resize(rgb_hat,(resized_hat_w,resized_hat_h))
我们先将帽子的 alpha通道 作为 mask掩膜:
mask = cv2.resize(a,(resized_hat_w,resized_hat_h)) mask_inv = cv2.bitwise_not(mask)
接着,从人像图中去除需要添加帽子的区域:
# 帽子相对与人脸框上线的偏移量 dh = 0 dw = 0 # 原图ROI # bg_roi = img[y+dh-resized_hat_h:y+dh, x+dw:x+dw+resized_hat_w] bg_roi = img[y+dh-resized_hat_h:y+dh,(eyes_center[0]-resized_hat_w//3):(eyes_center[0]+resized_hat_w//3*2)] # 原图ROI中提取放帽子的区域 bg_roi = bg_roi.astype(float) mask_inv = cv2.merge((mask_inv,mask_inv,mask_inv)) alpha = mask_inv.astype(float)/255 # 相乘之前保证两者大小一致(可能会由于四舍五入原因不一致) alpha = cv2.resize(alpha,(bg_roi.shape[1],bg_roi.shape[0])) # print("alpha size: ",alpha.shape) # print("bg_roi size: ",bg_roi.shape) bg = cv2.multiply(alpha, bg_roi) bg = bg.astype('uint8')
提取后的效果图如下:
接下来,我们提取圣诞帽的区域:
hat = cv2.bitwise_and(resized_hat,resized_hat,mask = mask)
提取后的效果图如下:
图像处理的最后一步是盖帽了,就是把提取的圣诞帽区域和图片中提取的区域相加,然后再放到原图中去。这里需要注意的就是,相加之前resize一下保证两者大小一致
# 相加之前保证两者大小一致(可能会由于四舍五入原因不一致) hat = cv2.resize(hat,(bg_roi.shape[1],bg_roi.shape[0])) # 两个ROI区域相加 add_hat = cv2.add(bg,hat) # cv2.imshow("add_hat",add_hat) # 把添加好帽子的区域放回原图 img[y+dh-resized_hat_h:y+dh,(eyes_center[0]-resized_hat_w//3):(eyes_center[0]+resized_hat_w//3*2)] = add_hat
最后,我们得到的效果图如下:
我们先来看效果图:
然后再来看这部分的实现代码:
import PySimpleGUI as sg import os.path import cv2
file_list_column = [
[sg.Submit('生成', key='Go', size=(15, 1)), sg.Cancel('退出', key='Cancel', size=(15, 1))],
[
sg.Text("图片位置(选择文件夹)"),
sg.In(size=(25, 1), enable_events=True, key="-FOLDER-"),
sg.FolderBrowse('浏览'),
],
[
sg.Listbox(
values=[], enable_events=True, size=(40, 20), key="-FILE LIST-" )
]
]
image_viewer_column = [
[sg.Text("从左边图片列表中选择一张图片:")],
[sg.Image(key="-IMAGE-")]
]
layout = [
[
sg.Column(file_list_column),
sg.VSeperator(),
sg.Column(image_viewer_column),
]
]
window = sg.Window("人像添加圣诞帽软件", layout)
filename = '' while True:
event, values = window.read() if event == "Cancel" or event == sg.WIN_CLOSED: break if event == "-FOLDER-":
folder = values["-FOLDER-"] try:
file_list = os.listdir(folder) except:
file_list = []
fnames = [
f for f in file_list if os.path.isfile(os.path.join(folder, f)) and f.lower().endswith((".jpg", ".png"))
]
window["-FILE LIST-"].update(fnames) elif event == "-FILE LIST-": try:
filename = os.path.join(values["-FOLDER-"], values["-FILE LIST-"][0]) if filename.endswith('.jpg'):
im = cv2.imread(filename)
cv2.imwrite(filename.replace('jpg', 'png'), im)
window["-IMAGE-"].update(filename=filename.replace('jpg', 'png')) except Exception as e:
print(e) elif event == "Go": try: # output = add_hat(filename) # 展示效果 # cv2.imshow("output",output) # cv2.waitKey(0) # cv2.imwrite("output.png",output) # print(output) window["-IMAGE-"].update(filename='output.png') except:
print('OMG!添加失败了!')
cv2.destroyAllWindows()
这里我选用的是 PySimpleGUI 框架来做的,比较简单。界面分为左右两部分,左边是两个按钮(确定和取消)加一个文件夹选择器,再加一个图片文件列表;右边是一个图片展示框。
左边选择文件夹后,会在下方列出文件夹里包含 .png 和 .jpg 的图片列表。点击图片列表中的图片,会在右边显示你所选择的图片。这个选中的图片也就是我们后面需要添加圣诞帽的图片。
这里需要注意的是,PySimpleGUI 的图片展示默认只支持 png 格式的,所以我在展示的时候做了判断,如果是 jpg 格式的图片,我就用 cv2 将其转换成 png 格式,然后再进行展示。
到这里,我们的关键步骤就完成了。接下来就是将我们两部分代码进行整合。其实也很简单,只需要在 GUI 界面上用户点击 “生成” 按钮时,后台接收到图片的路径,传递给我们的图片处理函数,在处理完后将图片保存在文件夹下,并更新 GUI 界面右边的展示的图片即可。
最终的运行效果:
打包软件我们还是用熟悉的 pyinstaller 模块,将代码打包成可执行的 exe 格式。
首先下载我们所需的模块包:
pip install pyinstaller
接着在命令行敲下打包命令:
pyinstaller christmashat.py
这个 christmashat.py 就是我们所写的程序了。
打包比较耗时,耐心等着就行。打包完成后,在我们代码的目录下会生成三个文件夹:
我们只需要关注 dist 就行。dist 文件夹下面是 christmashat 子文件夹,再进去就可以找到我们的 christmashat.exe 文件了。由于我们的程序运行有两个依赖文件,分别是我们的圣诞帽图片和我们的人脸识别训练集,所以我们需要将这两个文件放入这个 EXE 文件所在的文件夹下。
现在双击 christmashat.exe 文件就可以正常运行了。
本文从一个实际需求出发,向大家讲解了一个头像添加圣诞帽软件的诞生过程。相对于之前的一些小应用来说,涉及的知识点较多,可能还是有点复杂的。其中有一些知识点限于篇幅原因没有详细讲解,大家可以自己私下补充。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10