大家好,我是曹鑫老师,今天要给大家分享的是网上数据的自动批量搜集整理,大家更熟悉的名字是「爬虫」。
扫码预约九宫格数据
线下体验店
在课程开始之前,我要先说一段免责声明:这次课程对于数据抓取的相关知识,只做学术探讨,不要利用抓取到的数据做有损访问网站商业利益的事情,比如你也建立一个同样业务的网站;也不要对访问网站的服务器造成压力,影响正常用户的访问。以上也是大家以后在进行数据采集的时候需要注意的。那我们继续讲技术,数据采集对于我们日常的工作有什么帮助呢?我举个例子。
比如当我们来到CDA官网的直播公开课页面,我们可以看到这里有很多的课程,每个课程的组成部分是一致的,包含了它的主题海报、标题内容、授课老师的介绍和头像,同时我还可以翻页到下一页,看到更多的往期公开课,这种构造相信你在很多网站都看到过,你就要联想到,今天学到的内容,也差不多能应用到类似的网站去。
接下来,如果想要把这些内容全部整理到一张Excel表里面,你该怎么办?第一反应是不是:那就去挨个复制标题,复制老师的名字,复制介绍内容,一个个粘贴到Excel表里?没错,这是我们要做的,但真要拿着鼠标去挨个点,敲着键盘 `Ctrl+C`、 `Ctrl+V`,未免也太累了,这就是日常工作中比较典型的场景:任务操作一点不难,但需要不断重复操作,费时费力。
如果掌握了 Python 数据采集,我会怎么来解决这个重复操作的任务呢?我先给你演示一下效果。代码不难,就这么一段,你现在看肯定一头雾水,不要着急,我一段段带你来阅读理解。
点击`Shift+回车`,我们运行一下代码看看:
1. 浏览器自动打开指定的页面,也就是直播公开课的第一页。
2. Anaconda 中,星号表示该代码区域正在运行,而在代码区域下方会输出打印的结果。
3. 紧接着循环获取数据,代码获取到了第一页的内容,并整理成表格打印出来。
4. 然后,浏览器自动翻页到第二页,又一次获取第二页的内容,并整理成表格打印出来。
5. 继续,第三页,同样的输出。
6. 最后,输出了一个 Excel 文件,我们打开看一下,全部页数我需要的数据都整理好了。
我们想要的效果实现了,有几个好处:
1. 我只点了一下鼠标移动到代码区域;敲了一下键盘 `Shift+回车`启动程序,接下来我就不用再点鼠标或者敲键盘了,全部交给 Python 程序
2. 我现在是获取3页,我要获取10页,100页,1000页,我只要改一下循环这里的数字,让它循环10次、100次甚至是1000次,再也不用多花更多时间和体力,始终就是一点一运行,剩下的体力活全部交给 Python 。
一旦掌握了数据采集技术,类似的重复性工作你都可以自动化完成。
下面是分享给大家的代码,可以自行操作试试哦。
# 调用包 from selenium import webdriver from lxml import etree import pandas as pd # 启动浏览器打开指定网页 browser = webdriver.Chrome('/Users/davidfnck/Downloads/chromedriver') url = 'https://www.cda.cn/open.html' browser.get(url) # 先创建一个汇总的数据空表 df_all = pd.DataFrame() # 循环获取每一页 for i in range(3): page_no = i+1 # 获取页面源码解析 html = etree.HTML(browser.page_source) # 获取数据 ## 标题 title_list = html.xpath('/html/body/div[3]/div[2]/ul/li/a/div/h2/text()') ## 讲师 teacher_list = html.xpath('/html/body/div[3]/div[2]/ul/li/a/div/div/h4/text()') ## 介绍 intro_list = html.xpath('/html/body/div[3]/div[2]/ul/li/a/div/div/p/text()') ## 图片 pic_list = html.xpath('/html/body/div[3]/div[2]/ul/li/a/img/@src') ## 链接 link_list = html.xpath('/html/body/div[3]/div[2]/ul/li/a/@href') # 组合成字典,生成数据表 all_dict = {'标题':title_list, '讲师':teacher_list, '介绍':intro_list, '海报':pic_list, '链接':link_list } df = pd.DataFrame(all_dict) # 输出结果 print(f'第{page_no}页的输出结果:') print(df.head(3)) # 新表拼接到旧表的结尾 df_all = df_all.append(df) # 点击翻页 browser.find_element_by_xpath('/html/body/div[3]/div[2]/div/a[4]').click() # 数据表写入输出 Excel df_all.to_excel('./CDA_Live_公开课_多页.xlsx') print('最终结果的Excel已经生成')
当下企业数字化转型正快速发展,在越来越严苛的外部监管及越来越激烈的市场竞争驱动下,各行各业都在急迫地对数据进行最大化的价值挖掘。然而,大多数企业在推动落地时,都会遇到诸多问题。快速了解“数据从治理到分析”的落地流程与产出效果,以最低成本实现团队协同,快速解决深奥数据问题,成为越来越多企业加大数字化转型投入的核心动力。
CDA数据分析师作为专注于数字化人才培养及服务的教育品牌, 一直致力于大数据在产、学、 研的融合应用。以“培养企业需要的专业数字化人才, 搭建引领数字化时代的企业人才梯队” 为使命, 为DT时代数字化人才的数据能力提升及企业数字化转型提供标准化、 高效率、 可落地的数据应用侧解决方案。成立15年来, 始终在总结凝练先进数字化商业数据策略及技术应用实践, 以实际行动提升了数字化人才的职业素养与能力水平, 以建设高质量生态圈层促进了行业的持续快速发展。
CDA数据分析师携手华矩科技,以数据治理与数据分析为特色,联合开设九宫格数据体验店北京分店并对外运营。
图-CDA&华矩联合的九宫格数据·数据治理与分析体验店
体验内容
在数据治理与分析体验店,您可以从技术、业务、管理三大方面全方位体验数据治理与分析。
而CDA数据分析师与华矩科技的强强联合,也赋予了数据治理与分析体验店更多特色体验,主要包括:
体验店的亮点优势
区别于以往很重的数据治理咨询与实施,华矩科技首创的九宫格数据体验店模式让用户可以更轻更快地了解与体验数据治理,并在体验店获得场景模拟,团队协同和报告输出。主要包括:
开放免费体验科目
新店试业期间,九宫格数据·数据治理与分析体验店数个技术场景科目免费体验,从数据预处理、数据探查与诊断、数据清洗规则与标准化设计、数据集成、数据优化、数据质量监控到数据分析和数据挖掘等全流程场景,了解数据从产生到处理到应用的相关逻辑与实操路径,实现一个闭环体验并赋能个人技能习得或团队项目预演。
体验预约须知
1. 体验店开放地点
广州店:广州市天河区体育东路122号羊城商贸中心西塔1010
深圳店:深圳市福田区新闻路华丰大厦303
北京店:北京市海淀区高梁桥斜街59号院1号楼13层1306
2. 体验店开放时间
周一至周五 9:00-18:00
3. 体验预约流程
填写预约申请表单——后台审核体验资格——沟通确认体验时间地点——上门体验
4. 体验内容说明
每个场景科目均包含高级顾问辅导与自由实操环节,以确保用户了解操作方法并能自主操作获得结果。如需更多操作原理与数据治理与分析理论方法,敬请关注体验店后续推出的培训课程。
5. 温馨提示
新店开业期间针对既定科目场景开放免费体验,限时限量,请尽快预约体验。
不同科目体验涉及不同时长,敬请注意体验期间差旅住宿餐饮等费用需自理。
*该活动最终解释权归九宫格数据·数据治理与分析体验店所有。
码上预约体验,开启不一样的数据治理之旅
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31