
CDA数据分析师 出品
作者:Frank Andrade
编译:Mika
作为一名数据工作者,我特别喜欢用Python创建美观且易懂的可视化图表,而且技术难度小,不会花费大量时间。
交互式可视化也是如此,因此我花了很长时间寻找Python中好用的库。能创建交互式可视化图表的库有很多,但当使用Pandas时,很容易遇到各种各样的问题。
今天,我就来手把手教你如何直接使用Pandas创建出交互式可视化效果。
为了轻松创建交互式可视化,我们需要安装Cufflinks。这是一个将Pandas与Plotly连接起来的库,从而我们能够直接从Pandas创建可视化效果。
首先,确保安装Pandas并在终端上运行以下命令:
pip install pandas
pip install plotly
注意,你也可以使用conda安装Plotly
conda install -c plotly
安装 Plotly 后,运行以下命令安装 Cufflinks:
pip install cufflinks
接下来要导入以下库:
import pandas as pd
import cufflinks as cf
from IPython.display import display,HTMLcf.set_config_file(sharing='public',theme='ggplot',offline=True)
在这里,我用的是 ‘ggplot’ 主题,你也可以随意选择任何想要的主题。运行命令 cf.getThemes() 以获取所有可用的主题。
要在以下部分中使用 Pandas 进行交互式可视化,我们只需要使用语法 dataframe.iplot()
在本文中,我们将使用人口数据框。
“CDA数据分析师”公众号后台回复关键字 “人口” ,
即可下载数据CSV 文件。
下载文件后,移动到 Python 脚本所在的位置,然后在 Pandas 数据框中进行读取,如下所示。
df_population = pd.read_csv('population_total.csv')
数据框中包含了世界上大多数国家多年来的人口数据,如下所示:
在使用之前,我们需要对其进行处理,删除空值,重新调整,然后选择几个国家来测试交互式绘图。
代码如下:
# dropping null values
df_population = df_population.dropna()# reshaping the dataframe
df_population = df_population.pivot(index='year', columns='country',
values='population')# selecting 5 countries
df_population = df_population[['United States', 'India', 'China',
'Indonesia', 'Brazil']]
现在数据框如下图所示,可以进行绘图了。
下面让我们做一个折线图来,对其中5 个国家在 1955 年到 2020 年的人口增长量进行对比。
如前所述,我们将使用语法 df_population.iplot(kind=‘name_of_plot’) 来进行绘制。如下所示:
df_population.iplot(kind='line',xTitle='Years', yTitle='Population',
title='Population (1955-2020)')
一眼就可以看到,印度的人口增长速度比其他国家快。
单条形图
让我们创建一个条形图,显示2020年前每个国家的人口。
首先,我们从索引中选择2020年,然后将行与列转换,以获得列中的年份。将这个新的数据框命名为 df_population_2020 。我们将在绘制饼图时将再次使用这个数据框。
df_population_2020 = df_population[df_population.index.isin([2020])]
df_population_2020 = df_population_2020.T
现在我们可以用 .iplot() 来对新数据框进行绘制. 在这种情况下,我将使用颜色参数将条形颜色设置为浅绿色。
df_population_2020.iplot(kind='bar', color='lightgreen',
xTitle='Years', yTitle='Population',
title='Population in 2020')
多个变量分组的条形图
现在让我们看看不同年代初期人口的变化情况。
# filter years out
df_population_sample = df_population[df_population.index.isin([1980, 1990, 2000, 2010, 2020])]# plotting
df_population_sample.iplot(kind='bar', xTitle='Years',
yTitle='Population')
多年来,这些国家的人口都在增长,但有些国家的增长速度更快。
箱形图
当我们想查看数据的分布时,箱线图就派上用场了。箱线图将显示最小值、第一四分位数 (Q1)、中位数、第三个四分位数 (Q3)以及 最大值。查看这些值的最简单方法是创建交互式可视化。
接着让我们看到美国的人口分布。
df_population['United States'].iplot(kind='box', color='green',
yTitle='Population')
我们还可以看到其他国家或地区的人口分布。
df_population.iplot(kind='box', xTitle='Countries',
yTitle='Population')
如我们所见,我们还可以通过点击右侧的图例来过滤掉任何国家。
直方图表示数值数据的分布。让我们看看美国和印度尼西亚的人口分布。
df_population[['United States', 'Indonesia']].iplot(kind='hist',
xTitle='Population')
饼图
让我们用饼图来比较一下 2020 年的人口。为此,我们将使用在单个条形图部分中创建的数据框 df_population_2020
注意,要制作饼图,我们需要将“国家/地区”作为列而不是索引,因此我们使用 .reset_index() 来获取列。然后我们将其 2020 转换为字符串。
# transforming data
df_population_2020 = df_population_2020.reset_index()
df_population_2020 =df_population_2020.rename(columns={2020:'2020'})# plotting
df_population_2020.iplot(kind='pie', labels='country',
values='2020',
title='Population in 2020 (%)')
其实人口数据不适合用散点图,但出于演示的目的,这里还是列举出来了。
df_population.iplot(kind='scatter', mode='markers')
以上就是本文的全部内容了。不妨下载数据来试试,用Pandas来绘制文中提到的交互式可视化吧!
“CDA数据分析师”公众号后台回复关键字 “人口” ,
即可下载数据CSV 文件。
还想学习哪方面的内容,也欢迎在评论区给我们留言哦~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10