CDA数据分析师 出品
作者:Terence Shin
编译:Mika
学习数据分析绝非易事,有无数种工具和资源可供使用。因此,有时会让我们很难弄清楚该学习什么技能,该使用哪种工具。
在本文中,我们就来给大家介绍一下——数据分析中最常用的10个Python库。看看这些库你都用过吗?
01、Pandas
在数据分析师的日常工作中,70%到80%都涉及到理解和清理数据,也就是数据探索和数据挖掘。
Pandas主要用于数据分析,这是最常用的Python库之一。它为你提供了一些最有用的工具来对数据进行探索、清理和分析。使用Pandas,你可以加载、准备、操作和分析各种结构化数据。
02、NumPy
NumPy主要用于支持N维数组。这些多维数组的稳健性是Python列表的50倍,这也让NumPy成为许多数据科学家的最爱。
NumPy被TensorFlow等其他库用于张量的内部计算。NumPy为数值例程提供了快速的预编译函数,这些函数可能很难手动求解。为了获得更好的效率,NumPy使用面向数组的计算,从而能够轻松的处理多个类。
03、Scikit-learn
Scikit-learn可以说是Python中最重要的机器学习库。在使用Pandas或NumPy清理和处理数据之后,可以通过Scikit-learn用于构建机器学习模型,这是由于Scikit-learn包含了大量用于预测建模和分析的工具。
使用Scikit-learn有很多优势。比如,你可以使用Scikit-learn构建几种类型的机器学习模型,包括监督和非监督模型,交叉验证模型的准确性,进行特征重要性分析。
04、Gradio
Gradio让你只需三行代码即可为机器学习模型构建和部署web应用程序。它的用途与Streamlight或Flask相同,但部署模型要快得多,也容易得多。
Gradio的优势在于以下几点:
05、TensorFlow
TensorFlow是用于实现神经网络的最流行的 Python 库之一。它使用多维数组,也称为张量,能对特定输入执行多个操作。
因为它本质上是高度并行的,因此可以训练多个神经网络和GPU以获得高效和可伸缩的模型。TensorFlow的这一特性也称为流水线。
06、Keras
Keras主要用于创建深度学习模型,特别是神经网络。它建立在TensorFlow和Theano之上,能够用它简单地构建神经网络。但由于Keras使用后端基础设施生成计算图,因此与其他库相比,它的速度相对较慢。
07、SciPy
SciPy主要用于其科学函数和从NumPy派生的数学函数。该库提供的功能有统计功能、优化功能和信号处理功能。为了求解微分方程并提供优化,它包括数值计算积分的函数。SciPy的优势在于:
08、Statsmodels
Statsmodels是擅长进行核心统计的库。这个多功能库混合了许多 Python 库的功能,比如从 Matplotlib 中获取图形特性和函数;数据处理;使用 Pandas,处理类似 R 的公式;使用 Pasty,并基于 NumPy 和 SciPy 构建。
具体来说,它对于创建OLS等统计模型以及执行统计测试非常有用。
09、Plotly
Plotly绝对是构建可视化的必备工具,它非常强大,易于使用,并且能够与可视化交互。
与Plotly一起使用的还有Dash,它是能使用Plotly可视化构建动态仪表板的工具。Dash是基于web的Python接口,它解决了这类分析web应用程序中对JavaScript的需求,并让你能在线和离线状态下进行绘图。
10、Seaborn
Seaborn建立在Matplotlib上,是能够创建不同可视化效果的库。
Seaborn最重要的功能之一是创建放大的数据视觉效果。从而让最初不明显的相关性能突显出来,使数据工作人员能够更正确地理解模型。
Seaborn还有可定制的主题和界面,并且提供了具有设计感的数据可视化效果,能更好地在进行数据汇报。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16