作者:小伍哥
来源:AI入门学习
在数据处理过程中,经常会遇到多个表进行拼接合并的需求,在Pandas中有多个拼接合并的方法,每种方法都有自己擅长的拼接方式,本文对pd.concat()进行详细讲解,希望对你有帮助。pd.concat()函数可以沿着指定的轴将多个dataframe或者series拼接到一起,这一点和另一个常用的pd.merge()函数不同,pd.merge()解决数据库样式的左右拼接,不能解决上下拼接。
pd.concat( objs, axis=0, join='outer', ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True)
#构建需要的数据表
import pandas as pd
df1 = pd.DataFrame({'A':['A{}'.format(i) for i in range(0,4)], 'B':['B{}'.format(i) for i in range(0,4)], 'C':['C{}'.format(i) for i in range(0,4)]
})
df2 = pd.DataFrame({'A':['A{}'.format(i) for i in range(4,8)], 'B':['B{}'.format(i) for i in range(4,8)], 'C':['C{}'.format(i) for i in range(4,8)]
})
df3 = pd.DataFrame({'A':['A{}'.format(i) for i in range(8,12)], 'B':['B{}'.format(i) for i in range(8,12)], 'C':['C{}'.format(i) for i in range(8,12)]
})
现将表构成list,然后在作为concat的输入
frames = [df1, df2, df3] result = pd.concat(frames) A B C 0 A0 B0 C0 1 A1 B1 C1 2 A2 B2 C2 3 A3 B3 C3 0 A4 B4 C4 1 A5 B5 C5 2 A6 B6 C6 3 A7 B7 C7 0 A8 B8 C8 1 A9 B9 C9 2 A10 B10 C10 3 A11 B11 C11
传入也可以是字典
frames = {'df1':df1, 'df2':df2,'df3':df3} result = pd.concat(frames) A B C df1 0 A0 B0 C0 1 A1 B1 C1 2 A2 B2 C2 3 A3 B3 C3 df2 0 A4 B4 C4 1 A5 B5 C5 2 A6 B6 C6 3 A7 B7 C7 df3 0 A8 B8 C8 1 A9 B9 C9 2 A10 B10 C10 3 A11 B11 C11 三、横向拼接
当axis = 1的时候,concat就是行对齐,然后将不同列名称的两张表合并
#再构建一个表
df4 = pd.DataFrame({'C':['C{}'.format(i) for i in range(3,9)], 'E':['E{}'.format(i) for i in range(3,9)], 'F':['F{}'.format(i) for i in range(3,9)]
})
pd.concat([df1,df4], axis=1)
A B C C E F 0 A0 B0 C0 C3 E3 F3 1 A1 B1 C1 C4 E4 F4 2 A2 B2 C2 C5 E5 F5 3 A3 B3 C3 C6 E6 F6 4 NaN NaN NaN C7 E7 F7 5 NaN NaN NaN C8 E8 F8
加上join参数的属性,如果为'inner'得到的是两表的交集,如果是outer,得到的是两表的并集。
# join='inner' 取交集 pd.concat([df1, df4], axis=1, join='inner') A B C C E F 0 A0 B0 C0 C3 E3 F3 1 A1 B1 C1 C4 E4 F4 2 A2 B2 C2 C5 E5 F5 3 A3 B3 C3 C6 E6 F6 # join='outer' 和 默认值相同 pd.concat([df1, df4], axis=1, join='outer') A B C C E F 0 A0 B0 C0 C3 E3 F3 1 A1 B1 C1 C4 E4 F4 2 A2 B2 C2 C5 E5 F5 3 A3 B3 C3 C6 E6 F6 4 NaN NaN NaN C7 E7 F7 5 NaN NaN NaN C8 E8 F8 四、对比append方法
append是series和dataframe的方法,使用它就是默认沿着列进行凭借(axis = 0,列对齐)
df1.append(df2) A B C 0 A0 B0 C0 1 A1 B1 C1 2 A2 B2 C2 3 A3 B3 C3 0 A4 B4 C4 1 A5 B5 C5 2 A6 B6 C6 3 A7 B7 C7 五、忽略index
如果两个表的index都没有实际含义,使用ignore_index参数,置true,合并的两个表就睡根据列字段对齐,然后合并。最后再重新整理一个新的index。
pd.concat([df1, df4], axis=1, ignore_index=True) 0 1 2 3 4 5 0 A0 B0 C0 C3 E3 F3 1 A1 B1 C1 C4 E4 F4 2 A2 B2 C2 C5 E5 F5 3 A3 B3 C3 C6 E6 F6 4 NaN NaN NaN C7 E7 F7 5 NaN NaN NaN C8 E8 F8 六、增加区分组键
前面提到的keys参数可以用来给合并后的表增加key来区分不同的表数据来源
pd.concat([df1,df2,df3], keys=['x', 'y', 'z']) A B C x 0 A0 B0 C0 1 A1 B1 C1 2 A2 B2 C2 3 A3 B3 C3 y 0 A4 B4 C4 1 A5 B5 C5 2 A6 B6 C6 3 A7 B7 C7 z 0 A8 B8 C8 1 A9 B9 C9 2 A10 B10 C10 3 A11 B11 C11
frames = {'df1':df1, 'df2':df2,'df3':df3} result = pd.concat(frames) A B C df1 0 A0 B0 C0 1 A1 B1 C1 2 A2 B2 C2 3 A3 B3 C3 df2 0 A4 B4 C4 1 A5 B5 C5 2 A6 B6 C6 3 A7 B7 C7 df3 0 A8 B8 C8 1 A9 B9 C9 2 A10 B10 C10 3 A11 B11 C11
七、加入新的行
append方法可以将 series 和 字典就够的数据作为dataframe的新一行插入。
s2 = pd.Series(['X0', 'X1', 'X2', 'X3'], index=['A', 'B', 'C', 'D'])
df1.append(s2, ignore_index=True)
A B C D 0 A0 B0 C0 NaN 1 A1 B1 C1 NaN 2 A2 B2 C2 NaN 3 A3 B3 C3 NaN 4 X0 X1 X2 X3
如果遇到两张表的列字段本来就不一样,但又想将两个表合并,其中无效的值用nan来表示。那么可以使用ignore_index来实现。
dicts = [{'A': 1, 'B': 2, 'C': 3, 'X': 4}, {'A': 5, 'B': 6, 'C': 7, 'Y': 8}] df1.append(dicts, ignore_index=True) A B C X Y 0 A0 B0 C0 NaN NaN 1 A1 B1 C1 NaN NaN 2 A2 B2 C2 NaN NaN 3 A3 B3 C3 NaN NaN 4 1 2 3 4.0 NaN 5 5 6 7 NaN 8.0
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13