作者:Python进阶者
来源:Python爬虫与数据挖掘
问题:想向大佬们求教个问题,如果我有这样的需求,如何完成:
1、将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去。
2、将文件夹下所有文件的第二张表合并。我做出来了,核心部分没有用pandas,而且逻辑比较繁琐。想求一用pandas解决的简洁方案。
问题一和问题二的思路都挺常规的,就是取对应的表格,然后进行合并即可,这里仍然使用pandas来进行实现!
问题一:将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去。
这里基于之前【(这是月亮的背面)】提供的代码,我稍微做了些修改,代码如下:
# coding: utf-8 # 将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去 from pathlib import Path import pandas as pd
path = r'E:PythonCrawler有趣的代码Python自动化办公将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去' data_ex1 = pd.read_excel('ex1.xlsx', sheet_name='df1')
data_ex2 = pd.read_excel('ex2.xlsx', sheet_name='df2')
result = pd.concat([data_ex1, data_ex2], ignore_index=True)
result.to_excel('将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去.xlsx', index=False, encoding='utf-8')
print('添加和合并完成!')
代码运行之后,会生成一个新的excel文件,如下图所示:
合并的结果如下图所示:
完成之后,我发给【有点意思】大佬看,不过这个答案勉强符合他的意思,他后来自己也写了一个代码,能满足自己的需求,这里发给大家看看。
问题二:将文件夹下所有文件的第二张表合并
这里基于之前【(这是月亮的背面)】提供的代码,我稍微做了些修改,代码如下:
# coding: utf-8 # 合并所有表格中的第二张表格 from pathlib import Path import pandas as pd
path = Path(r'E:PythonCrawler有趣的代码Python自动化办公将文件夹下所有文件的第二张表合并')
data_list = [] for i in path.glob("*.xls*"): # data = pd.read_excel(i, sheet_name='df2') data = pd.read_excel(i, sheet_name=1)
data_list.append(data)
result = pd.concat(data_list, ignore_index=True)
result.to_excel(path.joinpath('取所有excel表的df2表进行合并.xlsx'), index=False, encoding='utf-8')
print('添加和合并完成!')
代码运行之后,会生成一个新的excel文件,如下图所示:
合并的结果如下图所示:
细心的小伙伴可能发现代码中的第9行,我其实是注释了,一开始我测试的表格,命名规则很有规范,每个工作簿都有df1,df2,df3三张表格,所以在合并的时候直接指定了表名,但是这样写就会有问题,万一有个表格中没有df2工作表,这个代码肯定就会报错了,所以在【(这是月亮的背面)】大佬的指导下,使用了sheet_name=1参数,以索引来定位第二张表格,恰到好处,前提条件是你的Excel表格中必须要有第二张表格,否则就会出现下图的错误。
我是Python进阶者。本文基于粉丝针对Python处理Excel指定表格合并的提问,给出了一个利用Python基础+pandas处理的解决方案。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20