三年前,我面临着一个将伴随我余生的决定--“<我>我要做什么谋生?”我刚刚完成高等教育,高中刚刚毕业。
在与朋友和家人讨论了很长时间后,我选择了“21世纪最性感的工作”。我决定攻读数据科学本科学位。
当时,我选择了数据科学,因为我不知道我的选择。我听说了一个很受欢迎的领域,它承诺灵活的工作时间和丰厚的工资支票,并决定专攻它。
然而,在数据行业工作了一年多后,我逐渐意识到数据科学只是我可以选择的众多职业道路之一。
数据行业有许多不太受欢迎的角色需求很高,薪酬也很高。
在本文中,我将描述数据行业中三个最有前途的职业选择--数据分析、数据科学和数据工程。
数据工程师是数据行业的无名英雄。他们整合了大量数据,并构建了其他数据专业人员可以轻松访问的可伸缩管道。
如果没有数据工程师所做的所有数据准备工作,数据科学家将无法建立机器学习模型。
在过去的几年里,随着公司开始意识到拥有一个可伸缩的数据框架的重要性,对数据工程师的需求有所增长。
数据工程师是这个列表中三个角色中技术含量最高的。他们设计数据库模式,管理系统中的数据流,并执行质量检查以确保数据一致。
为了成为一名数据工程师,您需要具备软件设计、数据库架构、devops和数据建模方面的技能。您还需要有一个强大的SQL命令。熟悉Python和Bash等脚本语言通常是数据工程工作描述中的一个要求。
数据分析员是组织数据以确定可以支持决策的趋势的个人。
这些人利用他们的技术和领域知识提出可以帮助企业发展的建议。
以下是一个数据分析师工作流的简单示例:
数据分析师通常执行类似于上面描述的任务。
为了识别客户价值并像上面那样对他们进行分组,分析师需要对公司提供的产品有很强的理解。他们还需要在商业和营销等领域拥有专业知识。
数据科学家的工作范围经常与数据分析师的工作范围混淆,这是因为他们的技能有很大的重叠。
然而,这些角色之间的主要区别是数据科学家建立机器学习模型,而数据分析师不。
数据科学家需要具备与分析师非常相似的技能。他们需要了解如何收集和转换数据,创建
可视化,执行分析任务,并在数据的帮助下解决业务问题。
除了上面列出的所有技能,数据科学家还需要知道如何创建预测模型。
以下是一个数据科学家工作流的示例:
数据科学极其受欢迎,围绕该领域有很多炒作。不过,数据行业还有其他职业增长迅速,在薪酬和需求方面同样看好。
数据科学家、工程师和分析师对数据生命周期同样重要。组织需要所有这些领域的专业知识,以便提出数据驱动的决策,增加业务价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31