我最近读到一篇文章,将数据科学描述为一个过饱和的领域。文章预测ML工程师将在未来几年取代数据科学家。
根据这篇文章的作者,大多数公司致力于用数据科学解决非常相似的业务问题。因此,数据科学家没有必要提出解决问题的新方法。
作者接着说,在大多数数据驱动的组织中,为了解决问题,只需要基本的数据科学技能。这个角色很容易被机器学习工程师取代--一个拥有数据科学算法基础知识的人,他也拥有部署ML模型的知识。
在过去的一年里,我读过许多类似的文章。
其中一些人表示,数据科学家的角色将被AutoML之类的工具所取代,而另一些人则将数据科学称为“垂死的领域”,很快将被数据工程和ML操作之类的角色所超越。
作为一个与数据行业不同支柱密切合作的人,我想就这个主题提供我的观点,并回答以下问题:
大多数组织中的数据科学工作流程非常相似。许多公司雇佣数据科学家来解决类似的商业问题。大多数建立的模型都不需要你想出新颖的解决方案。
在这些组织中,您将采用的解决数据驱动问题的大多数方法很可能以前已经使用过,您可以从网上可用的大量资源中获得灵感。
此外,AutoML和DataRobot等自动化工具的兴起使预测建模变得更加容易。
我在一些业务用例中使用DataRobot,它是一个很好的工具。它迭代许多值,并为您的模型选择最佳参数,以确保最终得到尽可能高精度的模型。
因此,如果预测模型随着时间的推移变得更加容易,为什么公司仍然需要数据科学家?为什么他们不直接使用自动化工具和ML工程师的组合来管理他们的整个数据科学工作流呢?
答案很简单:
首先,数据科学从来不是关于重新发明轮子或构建高度复杂的算法。
数据科学家的角色是用数据为组织增加价值。在大多数公司中,只有很小一部分涉及到构建ML算法。
其次,总会有自动化工具无法解决的问题。这些工具有一组固定的算法,您可以从中选择,如果您确实发现了一个需要结合使用多种方法来解决的问题,您将需要手动完成。
虽然这种情况并不经常发生,但仍然会发生--作为一个组织,你需要雇佣足够熟练的人来做到这一点。此外,像DataRobot这样的工具不能进行数据预处理,也不能进行建模之前的任何繁重工作。
作为一个为初创企业和大公司创建数据驱动解决方案的人,这种情况与处理Kaggle数据集的情况非常不同。
没有固定的问题。通常,您有一个数据集,然后给您一个业务问题。如何利用客户数据来最大限度地提高公司的销售额取决于您。
这意味着数据科学家需要的不仅仅是技术或建模技能。您将需要将数据与手头的问题连接起来。您需要决定可以优化解决方案的外部数据源。
数据预处理是漫长而艰苦的,不仅因为它需要很强的编程技能,还因为您需要试验不同的变量及其与手头问题的相关性。
您需要将模型精确度与转换率之类的指标联系起来。
模型构建并不总是这个过程的一部分。有时,一个简单的计算可能足以执行像客户排名这样的任务。只有一些问题需要你做出预测。
归根结底,数据科学家为组织提供的价值在于他们将数据应用于现实世界用例的能力。无论是建立细分模型、推荐系统,还是评估客户潜力,除非结果是可解释的,否则对组织没有真正的好处。
只要一个数据科学家能够在数据的帮助下解决问题,并弥合技术和业务技能之间的差距,这个角色就会继续存在。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20