我最近读到一篇文章,将数据科学描述为一个过饱和的领域。文章预测ML工程师将在未来几年取代数据科学家。
根据这篇文章的作者,大多数公司致力于用数据科学解决非常相似的业务问题。因此,数据科学家没有必要提出解决问题的新方法。
作者接着说,在大多数数据驱动的组织中,为了解决问题,只需要基本的数据科学技能。这个角色很容易被机器学习工程师取代--一个拥有数据科学算法基础知识的人,他也拥有部署ML模型的知识。
在过去的一年里,我读过许多类似的文章。
其中一些人表示,数据科学家的角色将被AutoML之类的工具所取代,而另一些人则将数据科学称为“垂死的领域”,很快将被数据工程和ML操作之类的角色所超越。
作为一个与数据行业不同支柱密切合作的人,我想就这个主题提供我的观点,并回答以下问题:
大多数组织中的数据科学工作流程非常相似。许多公司雇佣数据科学家来解决类似的商业问题。大多数建立的模型都不需要你想出新颖的解决方案。
在这些组织中,您将采用的解决数据驱动问题的大多数方法很可能以前已经使用过,您可以从网上可用的大量资源中获得灵感。
此外,AutoML和DataRobot等自动化工具的兴起使预测建模变得更加容易。
我在一些业务用例中使用DataRobot,它是一个很好的工具。它迭代许多值,并为您的模型选择最佳参数,以确保最终得到尽可能高精度的模型。
因此,如果预测模型随着时间的推移变得更加容易,为什么公司仍然需要数据科学家?为什么他们不直接使用自动化工具和ML工程师的组合来管理他们的整个数据科学工作流呢?
答案很简单:
首先,数据科学从来不是关于重新发明轮子或构建高度复杂的算法。
数据科学家的角色是用数据为组织增加价值。在大多数公司中,只有很小一部分涉及到构建ML算法。
其次,总会有自动化工具无法解决的问题。这些工具有一组固定的算法,您可以从中选择,如果您确实发现了一个需要结合使用多种方法来解决的问题,您将需要手动完成。
虽然这种情况并不经常发生,但仍然会发生--作为一个组织,你需要雇佣足够熟练的人来做到这一点。此外,像DataRobot这样的工具不能进行数据预处理,也不能进行建模之前的任何繁重工作。
作为一个为初创企业和大公司创建数据驱动解决方案的人,这种情况与处理Kaggle数据集的情况非常不同。
没有固定的问题。通常,您有一个数据集,然后给您一个业务问题。如何利用客户数据来最大限度地提高公司的销售额取决于您。
这意味着数据科学家需要的不仅仅是技术或建模技能。您将需要将数据与手头的问题连接起来。您需要决定可以优化解决方案的外部数据源。
数据预处理是漫长而艰苦的,不仅因为它需要很强的编程技能,还因为您需要试验不同的变量及其与手头问题的相关性。
您需要将模型精确度与转换率之类的指标联系起来。
模型构建并不总是这个过程的一部分。有时,一个简单的计算可能足以执行像客户排名这样的任务。只有一些问题需要你做出预测。
归根结底,数据科学家为组织提供的价值在于他们将数据应用于现实世界用例的能力。无论是建立细分模型、推荐系统,还是评估客户潜力,除非结果是可解释的,否则对组织没有真正的好处。
只要一个数据科学家能够在数据的帮助下解决问题,并弥合技术和业务技能之间的差距,这个角色就会继续存在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30