
SPSS分析技术:单因素方差分析
接下来将会介绍如何用SPSS做各种类型的方差分析,包括单因素方差分析,多因素方差分析,协方差分析,多元方差分析,重复测量方差分析和方差成分分析等应用原理和案例。
单因素方差分析
单因素方差分析用于分析单个自变量的不同水平是否对因变量产生显著影响。单因素方差分析将总方差分为两部分:可以由自变量解释的系统误差和无法由自变量解释的随机误差,若系统误差显著超过随机误差,则认为该自变量在取不同水平时因变量均值存在显著差异。
方差分析的原理
前面的文章虽然介绍过单因素方差分析的数据分析过程,这里再简单强调一遍。当样本数据可以做这样的归类处理,如下图所示:
首先,单因素方差分析的成对假设是:
原假设:因素的k个水平的均值相等;
备择假设:因素的k个水平的均值不完全相等;注意是不完全相等,而不是k个均值互不相等。
其次,求取组内方差和组间方差;
组间方差的计算公式为:
组内方差的计算公式为:
第三步是计算F统计量的值,以及做出假设检验判断;
上式中MSB和MSE分布称为组间方差和组内方差。在原假设为真的条件下,统计量服从自由度为k-1和k(n-1)的F分布。如果F统计量观测值较小,说明组内方差大,组间方差小,此时不能拒绝原假设;相反,就要拒绝原假设,认为自变量(因素)的k个水平对自变量有显著影响。SPSS会自动计算F统计量的观测值以及相应的概率P值,根据P值就可以完成统计检验。
案例分析
某体育高校对来自全国各地的2016级新生做了一次抽样检查,对抽到学生的身高、体重和胸围作了测量和记录,并将所有参与抽样体检的学生按省份划分为东部、中部和西部,试图分析来自不同地区学生的身高是否有差异。
问题分析
研究的问题是来自全国不同地区学生的身高是否有差异,可以理解为地区因素是否对学生身高有影响,影响因素(自变量)是地区,地区因素有三个水平(东部,中部和西部),所以适用单因素方差分析(单因素,三水平)。
分析步骤
1、选择菜单【分析】-【比较平均值】-【单因素ANOVA】,在【单因素方差分析】中选择变量【身高】,选入因变量列表;选择【地区】,将其选入因子。程序可以同时对多个因变量进行单因素方差分析,但是【因子】只能选取一个自变量。
2、单击【对比】,打开【单因素ANOVA:对比】。该选项是用来做因素不同水平的均值对比的。将多项式选中,在度中可以选择线性、二次项到五次项,表示可以利用不同的多项式对均值进行对比。我们选中线性,然后再系数中输入-1,0.5,0.5,点击下一页,再输入0.5,-1,0.5,再点击下一页,输入0.5,0.5,-1。表示将东部,中部和西部的均值配上系数进行加减对比。例如第一组系数-1,0.5,0.5,表示-1*东部均值+0.5*中部值+0.5*西部均值。
3、事后多重比较设置
单击【事后多重设置】,打开【单因素ANOVA:事后多重比较】。该对话框包括假定方差齐性和未假定方差齐性的总共18种两两对比方式,具体不同可以点击SPSS的帮助文档。这里我们选择LSD、Tukey和Tamhane’s T2检验。
4、单击【选项】,打开【单因素ANVOA】,选中描述性、方差齐性检验和平均值图。
结果解释
1、描述性统计表。
从描述性统计量表可以看出东部地区学生的平均身高和中西部的差异较大,而中西部学生的身高平均值接近。
2、方差分析表
由方差齐性检验表可得显著性概率P为0.640,大于0.05,说明东部、中部和西部三组间的方差在0.05水平上没有显著差异,即方差齐性检验通过,这是能够进行方差分析的必要条件。
3、方差分析表和线性对比
从方差分析表可以知道,F值为12.164,对应的显著性为0.000,小于0.05,所以方差分析结果是显著的,表明东部,中部和西部三组学生身高之间是有显著性差异的,具体那一组或那几组之间有差异,需要看事后两两比较。
对三组学生身高的均值赋予不同的系数,然后进行检验。由于是方差齐性的,所以看三个结果,显著性分别为0.000,0.008和0.030,说明三组系数的均值对比均有显著性差异。
4、事后检验表
可以得到两种检验方法的结果基本一致:东部与中部和东部与西部两组均值对比检验的P值均为0.000,说明两组同学间的平均身高差异显著。
5、子集检验表
将没有显著性的水平进行子集检验,可以得到中部和西部学生身高之间没有显著性差异,但是与东部学生身高有显著性差异。
6、身高均值折线图
身高均值折线图一样也可看出东部地区和中西部差异显著。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25