在数据科学领域工作了几年,我试图了解学习和教授数据科学的最佳方法。
我希望我们的团队在通过MOOCs进行教学方面做得很好。
“50多万学生不会错的,”正如广告所说。
虽然在线课程是最实惠的学习方式,但在线辅导也不应该被低估。
在需求方面,对于任何人来说,这是一个更昂贵但极其有效的方法来推进他们的数据科学职业生涯。
在供应方面,许多专业人士在他们的数据科学团队中是令人惊叹的导师,但没有考虑将家教作为额外收入的来源。
在本文中,我们将把这个问题作为一个“在线数据科学辅导”的商业案例来探讨。
抖音很热,但很容易。我花了一个小时才“得到它”
数据科学很热,但很难。我花了几年时间才“得到它”,然而,我仍然觉得不舒服说,“我得到了数据科学。”
这主要是因为数据科学确实是一个没完没了的话题。
没有人能说:“我知道关于数据科学的一切。”
它有许多不同的方面:
你明白重点了。
要成为一名优秀的数据科学家,必须具备这些技能的综合。再加上更多。
你们中的一些人可以自学,另一些人--不是真的。
在整个过程中会出现许多问题,如果有人在那里回答这些问题,这将是一个巨大的帮助。
你可能就是那个人!当然是一定的价格。
你有资格吗?如果你了解KDnuggets上一半的博客,你肯定有资格通过帮助有抱负的数据科学家来获得额外的收入。
辅导有抱负的人的不同方法包括:
这是一个双赢的局面,你可以把你对数据科学的热情转化为额外的收入,并可能在此过程中学到一些新的东西。
谁会对你的服务感兴趣?
有抱负的数据科学家目前在大学,参加在线课程,或与书本学习。他们总是需要一只额外的手。
但是,不仅仅是他们。
每一个愿意学习新东西的数据科学家,即每一个明智的数据科学家,都可以真正从您提供的东西中受益。
也不要低估经验丰富的数据科学家。
如果他们是“数学难”的类型,他们肯定需要一些数据科学沟通技能。
如果他们是“创造性”的数据可视化类型,他们可能需要“销售人员”类型的帮助,将他们的工作从非常漂亮到非常有说服力。
请放心,在这个过程中你也会学到很多东西。
你需要三件事:
设置基础结构以主办会议并获得报酬
你如何确保视频通话发生并获得报酬?
为什么?因为人们必须能在网上找到你。更重要的是,您需要记录了解您的人数的数据。不管是一个简单的预订页面还是一个辅导市场,你必须存在于互联网上。如果你正在寻找一些更私人但更容易的东西,那么Wix和Squarespace将是一个很好的匹配。
当你开始的时候,你可以自己安排会议。但那不是自动化的。作为一名数据科学家,您可能更喜欢自动化或至少半自动化调度。您可以使用Calendly或HubSpot。
这是旧闻:缩放,谷歌见面,微软团队拯救世界!
PayPal、Stripe和Revolut都是很好的候选人。
集成这四个工具,甚至至少视频和支付,将是您的技术基础设施。
如果你太忙或不想麻烦,你可以选择端到端付费在线会议的解决方案之一。我鼓励你尝试一下3Veta.com。
学习在线教学的基本知识
确保你没有跳过这一步。这听起来可能很平凡,但事实并非如此。
首先,你必须学会如何准备一个会议和领导一个会议。所有类型的在线咨询规则都是一样的。这些步骤很容易遵循--所有与建立、准备设备、收集材料等相关的步骤。让自己熟悉这个阶段,我强烈建议有一个清单。
其次,了解这个人面临的问题。
你在那里不是为了教他们“所有的数据科学”,你在那里是因为他们有一个特定的数据科学问题,你有专业知识来解决。
问很多问题。转移您的数据科学技能,并深入挖掘,直到您达到问题的根本原因。个人只不过是一个极其庞大的数据集合。
例如,他们告诉你,“我需要帮助来创建图表。”所以对话可以是这样的:
你用的是什么软件?你在编码,啊哈。
用什么编程语言?蟒蛇!不错的选择。
您首选的IDE是什么?嗯,Jupyter对初学者很好,但你可以考虑在未来转向其他东西。
您发现有有用的库吗?MatPlotLib是一个非常坚固的,但你试过Seaborn吗?我想这可能更适合你的案子。一个有趣的也是阴谋。但是如果你想在MatPlotLib上做得更好,我听到了,我会帮助你的。
那么您到底想要创建什么呢?你在创作它或设计它时挣扎吗?造型很重要。但是如果外表是你追求的,MatPlotLib不适合你。也许Python也不是正确的选择。在Tableau或Powerbi中试试这个怎么样?我可以给你看。
你是专家。指导他们成为一个更好的数据科学家,并分享你的错误或偏见。
联系目标客户
你需要对你的目标客户有所帮助。知道他们存在的地方或上网。
您真的能做到这一点吗?
开始在网上赚取额外收入从来没有这么容易过,我已经提倡这一点很长一段时间了。
听起来可能很难,但你知道吗?你是数据科学专家,不是抖音!
你的事业通常更难,但总是更有回报!
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20