因为有大量的竞争来获得数据科学家的工作。
找一份数据科学工作比以往任何时候都更难--如何将它转化为你的优势-kdnuggets
尽管许多有抱负的数据科学家发现,找到一份工作变得比以前更加困难…
因为有一种疯狂的冲动。每一种工程师、科学家和工作人员都称自己为数据科学家。
为什么有这么多“冒牌”数据科学家?
你有没有注意到有多少人突然自称为数据科学家?你的邻居,你在一个…
遇到的女孩
因为你不确定你能不能在这里面切牙。请记住,冒名顶替综合症在数据科学中非常活跃。
如何管理数据科学中的冒名顶替综合症
如果他们发现你一无所知怎么办?
我可以继续,但你明白…
那么,你如何将自己与群众区分开来呢?我不知道你是否可以,但我可以告诉你几个指针来测试你自己。这就是这篇文章的内容。
问自己几个问题,数数是的答案的数量。你越做这些,就越脱离群众。
If you are not a beginner but consider yourself to be at a somewhat mature stage as a data scientist, do you do these?
不要把你所有的时间和精力都花在分析更大的数据集或实验最新的深度学习模型上。
留出至少25%的时间来学习做一两件在任何地方、任何组织、任何情况下都很有价值的事情,
正如您所看到的,这些习惯相当容易养成和实践,即它们不需要繁重的工作、多年的统计学背景或深度机器学习知识方面的高级专业知识。
但是,令人惊讶的是,并不是每个人都接受它们。而且,那是你脱颖而出的机会。
想象一下你在面试中的样子。如果你对上面的问题有很多肯定的答案,你可以向你的面试官提到,
想象一下,你在面试委员会面前的声音会与其他应聘者有多大的不同,这些应聘者在常规的统计和梯度下降问题上表现出色,但没有提供全面能力的证明。
它们表明您对数据科学问题好奇。
它们表明你阅读,你分析,你交流。您创建和文档供其他人创建。
它们表明,您的思考超越了笔记本和分类准确性,而达到了业务增值和客户同理心的领域。哪家公司不会喜欢这样的应聘者?
… these habits are fairly easy to develop and practice i.e. they do not need backbreaking work, years-long background in statistics, or advanced expertise in deep machine learning knowledge. 但是,令人惊讶的是,并不是每个人都接受它们。而且,那是你脱颖而出的机会。
有这么多伟大的工具和资源来帮助你练习。在一篇小文章的篇幅里,甚至不可能列出其中的一小部分。我只是展示一些有代表性的例子。关键的想法是沿着这些思路探索,并为自己发现帮助艾滋病。
只使用Jupyter笔记本构建可安装的软件包
nbdev:使用Jupyter笔记本实现所有功能
如何制作出色的Python包-一步一步
2021年如何制作一个超赞的Python包
了解如何在自己的ML模型和模块开发中集成单元测试原则
Pytest for Machine Learning-一个简单的基于示例的教程
了解如何在数据科学任务中集成面向对象编程原则
面向数据科学家的面向对象编程:构建您的ML估计器
使用简单的Python脚本构建交互式web应用程序-不需要HTML/CSS知识
PyWeBio:使用Python以脚本方式编写交互式Web应用程序
直接从Jupyter笔记本上写出完整的编程和技术书籍。也可将此用于文档构建。
带有Jupyter的书籍
理解实际分析问题的多方面复杂性,以及它不仅仅是建模和预测
为什么业务分析问题需要您的所有数据科学技能
想象一下,你在面试委员会面前的声音会与其他应聘者有多大的不同,这些应聘者在常规的统计和梯度下降问题上表现出色,但没有提供全面能力的证明。
学习时不要跳台阶。跟着步骤走。
不要只专注于阅读最新的深度学习技巧或关于最新Python库的博客文章。在每一个机会,阅读该行业的顶级论坛和好书的董事会主题。我喜欢的一些书籍和论坛如下,
随着越来越多的企业采用和接受这些变革性技术,数据科学以及机器学习和人工智能的相关技能目前在就业市场上的需求非常高。人才的需求和供给双方之间存在着大量的竞争和沟通不畅。
一个亟待解决的问题是:如何从一百个共同申请者中区分自己?
我们列出了一些关键问题,你可以问自己,并评估你在一些技能和习惯上的独特性,这些技能和习惯使你与众不同。我们展示了一些想象中的对话片段,你可以在面试板上展示这些技能和习惯。我们还提供了一份资源的入围名单,以帮助您开始这些。
我们列出了几种参加MOOCs的方法,并建议阅读参考资料。
祝你在你的数据科学之旅中一切顺利…
您可以查看作者的GitHub存储库以获取机器学习和数据科学方面的代码、思想和资源。如果你和我一样,对人工智能/机器学习/数据科学充满热情,请在LinkedIn上添加我或在Twitter上关注我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06